Non-Equilibrum Svnthesis and Growth of Silicon Micro-and Nano-Columns
硅微纳米柱的非平衡合成与生长
基本信息
- 批准号:9901238
- 负责人:
- 金额:$ 33.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to explore the formation, growth, and physical properties of micro- and nano-columns. Arrays of high aspect ratio silicon nanocolumns will be grown on the surface of a silicon wafer by using a pulsed excimer laser to generate "active tips" where the deposition of silicon from the vapor phase is dramatically augmented. Mechanisms of initial formation and subsequent growth of nanocolumn arrays will be studied, and electronic and optoelectronic properties of silicon nano-columns measured. Controlled growth of silicon micro- and nano-column structures could find significant applications in solar cells, field emission tips and sensors. Prior work indicates a connection between silicon microcolumn growth during pulsed-laser irradiation and earlier studies of silicon whisker growth by the vapor-liquid-solid (VLS) method. This link opens new avenues for greater understanding of both methods and provides new tools for the production of semiconductor structures with reduced dimensionality. In the first stage of research the tips of microcolumns will be melted to activate nanocolumn growth. In a second research stage, melting will be avoided in order to grow nanometer scale tips using primarily photolytic activation of growth, based on established knowledge of laser-assisted CVD. In both stages the nanocolumns are grown using previously grown microcolumns as a template. Nanocolumns are expected to grow straight, maintaining the crystal orientation of the microcolumns that serve as their pedestals, and will be directly connected to the wafer beneath. This makes possible control and characterization of nanocolumn structure and properties. With straight, interconnected nanocolumns a short carrier path and short propagation/response time to electrical signals can be achieved. Pulsed-laser growth also permits control of the dopant-atom content as well as simple formation of a passivation layer from the gas phase. The effects of growth conditions on the length, diameter, and evolution of micro- and nano-columns will be investigated. In situ, nanosecond resolution diagnostics including ion probe measurements and emission and absorption spectroscopy will be used to determine the species present close to the silicon surface during ablation and their temporal behavior. Morphological, compositional, and structural features of the individual columns and arrays, and their growth kinetics, will be determined using HRSEM, HRTEM, and AFM microscopies. Computer modeling also will be used to guide understanding of the column formation and growth processes.%%%The project addresses basic research issues in a topical area of materials science having potential technological relevance. The basic knowledge and understanding gained from the research is expected to contribute to improving the perform-ance of current and new electronic/photonic applications by providing a fundamental understanding and a basis for designing and producing improved nanostructured materials. A variety of fundamental issues are to be addressed in these investigations. Central to the project is the training of graduate and undergraduate students to conduct research using state-of-the-art equipment and appropriate scientific methodology as they advance basic understanding of materials growth phenomena using materials having interesting and important applications. Thus the program integrates research and education through the training of students in a fundamentally and technologically significant area. ***
本项目的目的是探索微纳米柱的形成、生长和物理性质。高纵横比硅纳米柱阵列将在硅片表面生长,使用脉冲准分子激光产生“活性尖端”,其中来自气相的硅沉积显着增加。将研究纳米柱阵列的初始形成和随后的生长机制,并测量硅纳米柱的电子和光电子特性。硅微柱和纳米柱结构的可控生长在太阳能电池、场发射尖端和传感器中有重要的应用。先前的工作表明,在脉冲激光照射下硅微柱的生长与早期用蒸汽-液-固(VLS)方法研究硅晶须生长之间存在联系。这种联系为更好地理解这两种方法开辟了新的途径,并为生产降维半导体结构提供了新的工具。在研究的第一阶段,将微柱的尖端熔化以激活纳米柱的生长。在第二个研究阶段,将避免熔化,以便在激光辅助CVD的既定知识基础上,主要利用光解激活生长来生长纳米级尖端。在这两个阶段中,纳米柱的生长都使用先前生长的微柱作为模板。纳米柱预计会笔直生长,保持作为其基座的微柱的晶体方向,并将直接连接到下面的晶圆。这使得纳米柱结构和性能的控制和表征成为可能。通过直的、相互连接的纳米柱,可以实现短的载流子路径和短的电信号传播/响应时间。脉冲激光生长还允许控制掺杂原子的含量,以及从气相简单地形成钝化层。研究了生长条件对微纳米柱的长度、直径和演化的影响。在原位,纳秒分辨率诊断包括离子探针测量和发射和吸收光谱将用于确定在烧蚀过程中靠近硅表面的物质及其时间行为。单个柱和阵列的形态、组成和结构特征及其生长动力学将使用HRSEM、HRTEM和AFM显微镜进行测定。计算机建模也将用于指导柱的形成和生长过程的理解。该项目涉及材料科学主题领域的基础研究问题,具有潜在的技术相关性。从研究中获得的基本知识和理解有望通过为设计和生产改进的纳米结构材料提供基本的理解和基础,从而有助于提高当前和新的电子/光子应用的性能。在这些调查中要解决各种基本问题。该项目的核心是训练研究生和本科生使用最先进的设备和适当的科学方法进行研究,因为他们使用具有有趣和重要应用的材料来提高对材料生长现象的基本理解。因此,该计划通过在一个基础和技术上重要的领域培训学生,将研究和教育结合起来。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Pedraza其他文献
Anthony Pedraza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Pedraza', 18)}}的其他基金
NER: Nanoparticle Synthesis and Assembly Induced by Laser Light
NER:激光诱导的纳米粒子合成和组装
- 批准号:
0403444 - 财政年份:2004
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Acquisition of a Pulsed Excimer Laser with a Deposition Module
使用沉积模块采集脉冲准分子激光器
- 批准号:
9601800 - 财政年份:1996
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Laser-Enhanced Adhesion of Metallic Films Onto Ceramic Substrates
金属薄膜在陶瓷基材上的激光增强粘合
- 批准号:
9116528 - 财政年份:1992
- 资助金额:
$ 33.79万 - 项目类别:
Continuing grant
相似海外基金
Out of equilibrum and disordered strongly interacting many particle systems
不平衡且无序的强相互作用的许多粒子系统
- 批准号:
327008-2006 - 财政年份:2008
- 资助金额:
$ 33.79万 - 项目类别:
Discovery Grants Program - Individual
Out of equilibrum and disordered strongly interacting many particle systems
不平衡且无序的强相互作用的许多粒子系统
- 批准号:
327008-2006 - 财政年份:2007
- 资助金额:
$ 33.79万 - 项目类别:
Discovery Grants Program - Individual
Out of equilibrum and disordered strongly interacting many particle systems
不平衡且无序的强相互作用的许多粒子系统
- 批准号:
327008-2006 - 财政年份:2006
- 资助金额:
$ 33.79万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Geometric Problems of Crystal Growth and Equilibrum
数学科学:晶体生长与平衡的几何问题
- 批准号:
9105667 - 财政年份:1991
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant