Stochastically-inspired methods for solving systems of linear equations
求解线性方程组的随机方法
基本信息
- 批准号:0634802
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many applications in engineering and science require the solution of systems oflinear algebraic equations, or partial differential equations (PDEs) that are solved using linear equation solvers. Conventionally, these have been solved using direct and iterative approaches. This project explores a third way, through the use of stochastic methods for the solution of linear equations, using random walks on a Markov chain. Although the basis for these methods has been well known for many years, they have not found widespread application as they were not considered scalable or accurate. This project develops novel techniques that show how these methods can be viable alternatives to conventional methods, and researches this approach to expand its theoretical and practical horizons, including hybridizations with existing methods.The application of these techniques on a variety of practical engineering applications is under investigation, ranging from problems that require the solution of linear equations or PDEs, to a set of domain-specific applications, drawn from a range of fields. This effort has parallel research thrusts, of which one develops new theory to enhance the accuracy and efficiency of these methods, while the other applies the theory to specific applications, using problem-specific knowledge for further performance gains. The research is expected to have a broader impact beyond its immediate scope through its applicability to a range of problems in science and engineering, and its potential for wider application to fields beyond those considered in this project. In addition, the educational aspects of this work involve includingfacets of this work in the classroom, and in helping train the next generation of scientists and engineers.
在工程和科学中的许多应用都需要求解线性代数方程组,或者使用线性方程求解器求解偏微分方程(PDE)。 传统上,这些已经解决了使用直接和迭代的方法。 这个项目探索了第三种方法,通过使用随机方法来解决线性方程组,使用马尔可夫链上的随机行走。虽然这些方法的基础已经众所周知多年,但它们没有得到广泛的应用,因为它们被认为不具有可扩展性或准确性。 本项目开发新技术,展示这些方法如何成为传统方法的可行替代品,并研究这种方法,以扩大其理论和实践视野,包括与现有方法的杂交。这些技术在各种实际工程应用中的应用正在调查中,范围从需要解决线性方程或PDE的问题,到一组特定于领域的应用程序,从一系列领域中提取。 这项工作有平行的研究重点,其中一个开发新的理论,以提高这些方法的准确性和效率,而另一个将理论应用于具体的应用,使用特定于问题的知识,以进一步提高性能。 预计这项研究将通过其对科学和工程中一系列问题的适用性,以及其在本项目所考虑的领域之外的更广泛应用的潜力,产生超出其直接范围的更广泛影响。 此外,这项工作的教育方面涉及将这项工作的各个方面纳入课堂,并帮助培训下一代科学家和工程师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sachin Sapatnekar其他文献
Sachin Sapatnekar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sachin Sapatnekar', 18)}}的其他基金
Collaborative Research: DESC: Type I: Towards Reduce- and Reuse-based Design of VLSI Systems with Heterogeneous Integration
合作研究:DESC:类型 I:采用异构集成实现基于缩减和重用的 VLSI 系统设计
- 批准号:
2324946 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
- 批准号:
2212345 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SHF: Small: Enchancing the Reliability of Mixed-Signal Integrated Circuits
SHF:小型:提高混合信号集成电路的可靠性
- 批准号:
1714805 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research:Variation-Resilient VLSI Systems with Cross-Layer Controlled Approximation
SHF:小型:协作研究:具有跨层控制逼近的抗变化 VLSI 系统
- 批准号:
1525925 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Small: Stress Management in Integrated Circuits
SHF:小型:集成电路的压力管理
- 批准号:
1421606 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: AgELESS: Aging Estimation and Lifetime Enhancement in Silicon Systems
SHF:媒介:合作研究:AgELESS:硅系统中的老化估计和寿命增强
- 批准号:
1162267 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SHF: Small: Enabling Resiliency in Nanometer-Scale CMOS Circuits
SHF:小:实现纳米级 CMOS 电路的弹性
- 批准号:
1017778 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
An Integrated Design and CAD Approach for Efficient Power Delivery in Multicore Processors
用于实现多核处理器高效供电的集成设计和 CAD 方法
- 批准号:
0903427 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Thermal Effects in Integrated Circuits
集成电路中的热效应
- 批准号:
0541367 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Design Automation Techniques for SOI and High-Performance Bulk CMOS Designs
SOI 和高性能 Bulk CMOS 设计的设计自动化技术
- 批准号:
0098117 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Computationally-Inspired Design of Non-Viral Gene Delivery Vehicles for mRNA-Based Cystic Fibrosis Therapies
用于基于 mRNA 的囊性纤维化治疗的非病毒基因传递载体的计算启发设计
- 批准号:
10760605 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Greatly Extended Subzero Ischemic Storage of Renal Allografts Using Novel Bio-inspired Next Generation Cryoprotectants
使用新型仿生下一代冷冻保护剂大大延长肾同种异体移植物的零度以下缺血储存
- 批准号:
10761617 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Modeling the mucosal glycopeptide mesh for improved disease understanding and mucin-inspired biomaterial design
对粘膜糖肽网进行建模,以提高对疾病的理解和粘蛋白启发的生物材料设计
- 批准号:
10715230 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
A Bio-inspired Latent TGF-beta Conjugated Scaffold for Patient-specific Cartilage Regeneration
用于患者特异性软骨再生的仿生潜在 TGF-β 共轭支架
- 批准号:
10366994 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
SBIR Direct Phase II: Nature Inspired Biphasic Glue for Dura Repair
SBIR Direct Phase II:用于硬脑膜修复的自然双相胶水
- 批准号:
10489915 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Equipment Supplement to R35GM146987: Purchase of LC-MS system for high throughput isolation of bioactive natural products
R35GM146987 的设备补充:购买 LC-MS 系统,用于高通量分离生物活性天然产物
- 批准号:
10798569 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Development of Strategies for the Enantioselective Synthesis of Heterocycles and Acyclic Amines
杂环和无环胺对映选择性合成策略的发展
- 批准号:
10656344 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Structural and functional principles of activation and regulation of the transient receptor potential channel TRPV3.
瞬时受体电位通道 TRPV3 激活和调节的结构和功能原理。
- 批准号:
10559520 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
A Bio-inspired Latent TGF-beta Conjugated Scaffold for Patient-specific Cartilage Regeneration
用于患者特异性软骨再生的仿生潜在 TGF-β 共轭支架
- 批准号:
10631889 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别: