Meromorphic Solutions of Differential Equations and Algebro-Geometric Differential Operators

微分方程和代数几何微分算子的亚纯解

基本信息

  • 批准号:
    9970299
  • 负责人:
  • 金额:
    $ 3.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

A recent discovery by F. Gesztesy and the PI reveals a relationshipbetween the KdV equation and the condition that the associated ordinarylinear differential equations have only meromorphic solutions. The samerelationship exists also for the AKNS system. Both, the KdV equation andthe AKNS system, are completely integrable Hamiltonian systems. It isanticipated that the relationship pertains to more general integrablesystems and the major object of the project is to establish this. Animportant role in this respect is played by so called algebro-geometricsolutions of the integrable system under consideration which assume therole of potentials of the associated linear equations. The PI plans anexpansion of abelian function theory to include functions on singularalgebraic curves since this is required for a complete characterizationof algebro-geometric potentials. Algebro-geometric potentials associatedwith the KdV equation give also the first tractable examples ofquasi-periodic, non-selfadjoint differential operators. It is planned toinvestigate such operators and their spectrum and to develop an inversespectral theory for them.Integrable systems and, in particular, the KdV equation play animportant role in mathematical physics were they are used as models forvarious phenomena, e.g., in mechanics, hydrodynamics, and nonlinearoptics. Even for systems which are not integrable it is often fruitfulto consider them as perturbations of integrable systems. Likewise,inverse spectral theory is a central part of applied mathematics sinceit is fundamental in areas ranging from quantum theory to computertomography. Therefore this line of research has enjoyed an enormousamount of attention in the past and will so in the future. This projectis part of that endeavor.
F.Gesztesy和PI最近的一项发现揭示了KdV方程与相关的常线性微分方程组只有亚纯解的条件之间的关系。AKNS系统也存在同样的关系。KdV方程和AKNS系统都是完全可积的哈密顿系统。预计这种关系与更一般的可积系统有关,该项目的主要目标是建立这种关系。在这方面,所考虑的可积系统的所谓代数几何解在这方面起着重要的作用,它假定了相关线性方程的位势的作用。PI计划对阿贝尔函数理论进行扩展,以包括奇异代数曲线上的函数,因为这是完全刻画代数几何势所必需的。与KdV方程相联系的代数几何势也给出了拟周期、非自伴微分算子的第一个容易处理的例子。可积系统,特别是KdV方程在数学物理中扮演着重要的角色,因为它们被用作各种现象的模型,例如在力学、流体力学和非线性光学中。即使对于不可积系统,把它们看作是可积系统的扰动通常也是有效的。同样,逆谱理论是应用数学的核心部分,因为它在从量子理论到计算机层析成像的各个领域都是基础。因此,这一研究路线在过去和未来都受到了极大的关注。这个项目是这一努力的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rudi Weikard其他文献

On Fourier expansions for systems of ordinary differential equations with distributional coefficients
关于具有分布系数的常微分方程组的傅里叶展开
  • DOI:
    10.1016/j.jfa.2024.110370
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Steven Redolfi;Rudi Weikard
  • 通讯作者:
    Rudi Weikard
The inverse resonance problem for left-definite Sturm–Liouville operators
  • DOI:
    10.1016/j.jmaa.2014.10.078
  • 发表时间:
    2015-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Bledsoe;Rudi Weikard
  • 通讯作者:
    Rudi Weikard
On a theorem of Hochstadt
  • DOI:
    10.1007/s002080050178
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Rudi Weikard
  • 通讯作者:
    Rudi Weikard
On the leading energy correction for the statistical model of the atom: Interacting case
Green’s Functions for First-Order Systems of Ordinary Differential Equations without the Unique Continuation Property

Rudi Weikard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rudi Weikard', 18)}}的其他基金

Special Session on Mathematical Relativity at CADS 5
CADS 5 数学相对论特别会议
  • 批准号:
    1118401
  • 财政年份:
    2011
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
On Relativistic and Non-Relativistic Fermi Systems
关于相对论性和非相对论性费米系统
  • 批准号:
    0800906
  • 财政年份:
    2008
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
A conference on the Titchmarsh-Weyl $m$-function
关于 Titchmarsh-Weyl $m$ 函数的会议
  • 批准号:
    0405265
  • 财政年份:
    2004
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Nonselfadjoint Inverse Problems
非自伴随反问题
  • 批准号:
    0304280
  • 财政年份:
    2003
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
UAB 2002 International Conference on Differential Equations and Mathematical Physics
UAB 2002微分方程与数学物理国际会议
  • 批准号:
    0120195
  • 财政年份:
    2001
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
UAB-GIT International Conference on Differential Equations and Mathematical Physics
UAB-GIT 微分方程与数学物理国际会议
  • 批准号:
    9812460
  • 财政年份:
    1998
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Meromorphic Solutions of DifferentialEquations and Spectral Theory
数学科学:微分方程的亚纯解和谱理论
  • 批准号:
    9401816
  • 财政年份:
    1994
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantitative Studies of Solutions of Partial Differential Equations
偏微分方程解的定量研究
  • 批准号:
    2154506
  • 财政年份:
    2022
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008854/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008897/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
  • 批准号:
    2054184
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008889/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008919/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了