Nonselfadjoint Inverse Problems
非自伴随反问题
基本信息
- 批准号:0304280
- 负责人:
- 金额:$ 11.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Direct and inverse spectral and scattering problems of selfadjoint Sturm-Liouville operators are among the most studied subjects in mathematics. The status of nonselfadjoint Sturm-Liouville operators is by far not as complete even though they are currently under intensive investigation by a number of people. The present research project aspires to make a contribution in this area, in particular with regard to inverse problems. The main tool which sets the treatment of selfadjoint problems apart from others is the spectral theorem. The dire consequences of its absence can sometimes be overcome when it is assumed that the di.erential equation has (or its solutions have) certain structural properties. For example, Floquet theory guarantees a certain structure for the solutions of periodic equations, which in turn allows to draw conclusions for the spectrum which are very similar to the selfadjoint case (intervals become analytic arcs). Another class of such potentials are the so called algebro-geometric potentials which have been intensively investigated in the past few decades by many people including the PI. It is planned to apply the expertise gathered to obtain results for this kind of potentials and certain perturbations of them. In particular, recovery of the potential of a Schrodinger equation from the location of eigenvalues and resonances will be investigated.Physical laws are encoded by differential equations. The problem of obtaining solutions (or at least some of their properties) knowing the coefficients of the differential equation is usually called a direct problem. The inverse problem, on the other hand, is the problem of obtaining the coefficients from a certain knowledge about the solutions (often knowledge about spectral properties). The goal of the project is to investigate certain aspects of such problems. The differential equations investigated have widespread applications in physics and engineering, e.g. recovering material properties inside an object from measurements on the outside of the object. The solution of inverse problems is at the heart of medical and industrial imaging, mineral exploration, and earth quake studies to name a few.
自伴Sturm-Liouville算子的正、逆谱和散射问题是数学中研究最多的课题之一。非自伴Sturm-Liouville算子的状态至今还不完全,尽管它们目前正受到许多人的深入研究。本研究项目希望在这一领域做出贡献,特别是在逆问题方面。将自伴问题的处理与其他问题区别开来的主要工具是谱定理。当假定微分方程具有(或其解具有)某些结构性质时,它的缺失所带来的可怕后果有时可以得到克服。例如,Floquet理论保证了周期方程解的某种结构,这反过来又允许得出与自伴情况非常相似的谱结论(区间成为解析弧)。另一类这样的潜力是所谓的代数几何潜力已深入研究,在过去的几十年里,许多人,包括PI。计划应用所收集的专门知识,以获得这种潜力及其某些扰动的结果。特别地,将研究从本征值和共振的位置恢复薛定谔方程的势。物理定律由微分方程编码。已知微分方程的系数而获得解(或至少获得解的某些性质)的问题通常被称为正问题。另一方面,逆问题是从关于解的一定知识(通常是关于谱特性的知识)获得系数的问题。该项目的目标是调查这些问题的某些方面。所研究的微分方程在物理学和工程学中有着广泛的应用,例如,从物体外部的测量中恢复物体内部的材料特性。反问题的解决方案是医学和工业成像,矿产勘探和地震研究的核心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rudi Weikard其他文献
On Fourier expansions for systems of ordinary differential equations with distributional coefficients
关于具有分布系数的常微分方程组的傅里叶展开
- DOI:
10.1016/j.jfa.2024.110370 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:1.600
- 作者:
Steven Redolfi;Rudi Weikard - 通讯作者:
Rudi Weikard
The inverse resonance problem for left-definite Sturm–Liouville operators
- DOI:
10.1016/j.jmaa.2014.10.078 - 发表时间:
2015-03-15 - 期刊:
- 影响因子:
- 作者:
Matthew Bledsoe;Rudi Weikard - 通讯作者:
Rudi Weikard
On a theorem of Hochstadt
- DOI:
10.1007/s002080050178 - 发表时间:
1998-05-01 - 期刊:
- 影响因子:1.400
- 作者:
Rudi Weikard - 通讯作者:
Rudi Weikard
Green’s Functions for First-Order Systems of Ordinary Differential Equations without the Unique Continuation Property
- DOI:
10.1007/s00020-022-02703-6 - 发表时间:
2022-05-28 - 期刊:
- 影响因子:0.900
- 作者:
Steven Redolfi;Rudi Weikard - 通讯作者:
Rudi Weikard
On the leading energy correction for the statistical model of the atom: Interacting case
- DOI:
10.1007/bf01218487 - 发表时间:
1987-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Heinz Siedentop;Rudi Weikard - 通讯作者:
Rudi Weikard
Rudi Weikard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rudi Weikard', 18)}}的其他基金
Special Session on Mathematical Relativity at CADS 5
CADS 5 数学相对论特别会议
- 批准号:
1118401 - 财政年份:2011
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
On Relativistic and Non-Relativistic Fermi Systems
关于相对论性和非相对论性费米系统
- 批准号:
0800906 - 财政年份:2008
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
A conference on the Titchmarsh-Weyl $m$-function
关于 Titchmarsh-Weyl $m$ 函数的会议
- 批准号:
0405265 - 财政年份:2004
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
UAB 2002 International Conference on Differential Equations and Mathematical Physics
UAB 2002微分方程与数学物理国际会议
- 批准号:
0120195 - 财政年份:2001
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Meromorphic Solutions of Differential Equations and Algebro-Geometric Differential Operators
微分方程和代数几何微分算子的亚纯解
- 批准号:
9970299 - 财政年份:1999
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
UAB-GIT International Conference on Differential Equations and Mathematical Physics
UAB-GIT 微分方程与数学物理国际会议
- 批准号:
9812460 - 财政年份:1998
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Mathematical Sciences: Meromorphic Solutions of DifferentialEquations and Spectral Theory
数学科学:微分方程的亚纯解和谱理论
- 批准号:
9401816 - 财政年份:1994
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 11.86万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 11.86万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Research Grant
Study of Instabilities in Phase Transitions, Shell Buckling, and Inverse Problems
相变不稳定性、壳屈曲和反问题的研究
- 批准号:
2305832 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
- 批准号:
2306221 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Continuing Grant
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 11.86万 - 项目类别:
Standard Grant














{{item.name}}会员




