Analysis on Fractals
分形分析
基本信息
- 批准号:9970337
- 负责人:
- 金额:$ 13.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractStrichartz Analysis on fractals studies the properties of functions defined on fractals, centering on certain analogs of differential equations. On a limited class of self-similar fractals it is possible to construct operators that play the role of the Laplacian, one of the central objects in traditional analysis on Euclidean spaces and manifolds. This project will attempt to extend the construction of Laplacians to a broader class of fractals, and to explore the fundamental properties of these Laplacians and other differential-type operators. In addition, this project will attempt to broaden the connections between this new area of research and more traditional areas, including global analysis, harmonic analysis, splines and the finite element method, pseudodifferential operators, and special functions. This project includes collaborative work with undergraduate students (REU) on computer experiments to explore examples and generate conjectures. It is expected that this experimental work will lead to deeper theoretical understanding of the subject. Scientists in diverse areas have realized that many objects in the real world can be modeled by fractals. In order to study physical processes on such fractal objects, it is necessary to develop a mathematical theory that will give the analog of differential equations on fractals. Such a theory is in the early stages of development, and this project will contribute to that development, bringing to the problem ideas and techniques from other areas of mathematics. It is expected that this project will develop tools that will be of use to applied mathematicians and scientists, since part of the project focuses on numerical methods and algorithms for solving concrete problems. The contribution of undergraduate students to the project will be significant, and in turn will be a positive educational experience for the students.
分形分析是以微分方程的某些类似物为中心,研究定义在分形上的函数的性质。 在有限的一类自相似分形上,可以构造起拉普拉斯算子作用的算子,拉普拉斯算子是欧几里得空间和流形上传统分析的中心对象之一。 这个项目将尝试将拉普拉斯算子的构造扩展到更广泛的分形类,并探索这些拉普拉斯算子和其他微分型算子的基本性质。 此外,该项目将试图扩大这一新的研究领域和更传统的领域,包括全球分析,调和分析,样条和有限元方法,伪微分算子和特殊功能之间的联系。 该项目包括与本科生(REU)合作进行计算机实验,以探索示例并生成图表。 预计这项实验工作将导致更深入的理论理解的主题。 不同领域的科学家已经认识到,真实的世界中的许多物体都可以用分形来建模。 为了研究这种分形物体上的物理过程,有必要发展一种数学理论,它将给出分形微分方程的模拟。 这样的理论处于发展的早期阶段,这个项目将有助于发展,从数学的其他领域带来的问题的想法和技术。 预计该项目将开发对应用数学家和科学家有用的工具,因为该项目的一部分侧重于解决具体问题的数值方法和算法。 本科生对该项目的贡献将是显着的,反过来将是一个积极的教育经验的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Strichartz其他文献
Robert Strichartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Strichartz', 18)}}的其他基金
Sixth Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals
第六届康奈尔分形分析、概率和数学物理会议
- 批准号:
1700187 - 财政年份:2017
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Cornell's Fifth Conference on Analysis, Probability and Mathematical Physics on Fractals
康奈尔大学第五届分形分析、概率和数学物理会议
- 批准号:
1361934 - 财政年份:2014
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
REU Site: Cornell's Summer REU Program in Mathematics
REU 网站:康奈尔大学夏季 REU 数学课程
- 批准号:
1156350 - 财政年份:2012
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
REU Sites: Cornell's Summer REU Program in Mathematics
REU 站点:康奈尔大学夏季数学 REU 项目
- 批准号:
0648208 - 财政年份:2007
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
Non-linear Analysis in Riemannian Geometry
黎曼几何中的非线性分析
- 批准号:
0306495 - 财政年份:2003
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
REU Site: Cornell's Summer REU Program in Mathematics
REU 网站:康奈尔大学夏季 REU 数学课程
- 批准号:
0139229 - 财政年份:2002
- 资助金额:
$ 13.38万 - 项目类别:
Continuing grant
Linear and Non-Linear Eigenvalues in Geometry
几何中的线性和非线性特征值
- 批准号:
0072164 - 财政年份:2000
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
- 批准号:
2334026 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
- 批准号:
22H01128 - 财政年份:2022
- 资助金额:
$ 13.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: The Geometry of Fractals Meets Fourier Analysis
职业:分形几何与傅立叶分析的结合
- 批准号:
2142221 - 财政年份:2022
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
Cornell 7th Conference on Analysis, Probability, and Mathematical Physics on Fractals
康奈尔大学第七届分形分析、概率和数学物理会议
- 批准号:
2000148 - 财政年份:2020
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Analysis of Laplacians on fractals invariant under action of discrete groups of Moebius transformations
离散群Moebius变换作用下分形不变的拉普拉斯分析
- 批准号:
18K18720 - 财政年份:2018
- 资助金额:
$ 13.38万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis and geometry of fractals and stochastic processes on them from field-transverse viewpoints
从场横向的角度对分形及其随机过程进行分析和几何
- 批准号:
18H01123 - 财政年份:2018
- 资助金额:
$ 13.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Sixth Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals
第六届康奈尔分形分析、概率和数学物理会议
- 批准号:
1700187 - 财政年份:2017
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Analysis and Programming of Star-Shaped Set Inversion Fractals
星形集合反演分形的分析与编程
- 批准号:
483530-2015 - 财政年份:2015
- 资助金额:
$ 13.38万 - 项目类别:
University Undergraduate Student Research Awards
Towerd analysis on metric-measure spaces-- Cheeger theory and fractals
度量测度空间的塔分析--Cheeger理论和分形
- 批准号:
26610023 - 财政年份:2014
- 资助金额:
$ 13.38万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Cornell's Fifth Conference on Analysis, Probability and Mathematical Physics on Fractals
康奈尔大学第五届分形分析、概率和数学物理会议
- 批准号:
1361934 - 财政年份:2014
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant