Computable Structure Theory
可计算结构理论
基本信息
- 批准号:9970452
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970452Knight This award will support mainly the travel of graduate students inmathematical logic to professional meetings and to a lesser extent willsupport travel of some outside speakers to the Notre Dame Logic Seminar,which is also important for providing the broadest background in logicfor the students. Finally, a small portion of the funds (about 10%)will enable the students to have permanent access to certain importantreference books. Knight and her students are working on various aspects ofcomputable structure theory. One student, Charles McCoy, has several resultsconnecting definability with complexity. He is now trying to characterizein a mathematical way the linear orderings and Boolean algebras with thefeature that between computable copies, there is always some isomorphismat level two in the arithmetic hierarchy. Another student, Andrew Arana,is beginning work on models of arithmetic and enumerations. Knight herselfwill concentrate on problems involving existence of computable copies ofstructures. In particular, she hopes to extend the partial results ofKhisamiev on reduced Abelian p-groups with computable copies. She isinterested in a question of Shore, on what statement could serve as acomputable non-structure theorem. Knight has a side interest in systemstheory. The area of computable structure, a new and arguably more suggestiveterm for what has long been known as recursion theory, has its roots in thediscovery more than half a century ago of sets of integers for which noalgorithm exists to decide if a particular integer is a member. Moreover,another old result (from the 1950's) established that there are incomparablesets of this type, i.e., two sets such that neither permits one to constructthe other from it in a mechanical way. As a practical matter, one caresabout the speed and efficiency of algorithms and not their mere existence.Nevertheless, understanding the inherent limits of algorithmic possibilityis an important philosophical accomplishment and triumph of the humanintellect, in a way the ultimate in self-knowledge.***
小行星9970452 该奖项将主要支持研究生在数理逻辑专业会议的旅行,并在较小程度上将支持旅行的一些外部发言者的圣母院逻辑研讨会,这也是重要的逻辑为学生提供最广泛的背景。 最后,一小部分资金(约10%)将使学生能够永久获得某些重要的参考书籍。 奈特和她的学生正在研究可计算结构理论的各个方面。 一位名叫查尔斯·麦考伊的学生得出了几个将可定义性与复杂性联系起来的结果。 他现在正试图以数学的方式来刻画线性序和布尔代数的特征,即在可计算的副本之间,总是有一些同构的算术层次中的第二级。 另一个学生,安德鲁·阿拉纳,正在开始研究算术和枚举的模型。 奈特本人将专注于涉及结构的可计算副本存在的问题。 特别是,她希望扩大部分结果Khisamiev约阿贝尔p-群与可计算的副本。 她对海岸的一个问题很感兴趣,关于什么陈述可以作为可计算的非结构定理。 奈特对系统理论有一点兴趣。 可计算结构领域,一个新的,可以说是更有说服力的术语,长期以来一直被称为递归理论,其根源是发现超过半个世纪前的整数集,没有算法存在,以确定是否一个特定的整数是一个成员。 此外,另一个旧结果(来自20世纪50年代)确定存在这种类型的不可比较的集合,即,两个集合,使得两者都不允许一个以机械的方式从它构造另一个。 实际上,人们关心的是算法的速度和效率,而不仅仅是它们的存在。然而,理解算法可能性的内在局限性是一项重要的哲学成就,也是人类智力的胜利,在某种程度上是自我认识的终极。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Knight其他文献
Predictors of Electroconvulsive Therapy Use in a Large Inpatient Psychiatry Population
大量住院精神病患者中电惊厥治疗使用的预测因素
- DOI:
10.1097/yct.0000000000000461 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Julia Knight;Micaela Jantzi;J. Hirdes;T. Rabinowitz - 通讯作者:
T. Rabinowitz
Clomiphene-Associated Suicide Behavior in a Man Treated for Hypogonadism: Case Report and Review of The Literature.
一名接受性腺功能减退症治疗的男性与克罗米芬相关的自杀行为:病例报告和文献综述。
- DOI:
10.1016/j.psym.2015.06.003 - 发表时间:
2015 - 期刊:
- 影响因子:3.4
- 作者:
Julia Knight;Amrita S. Pandit;A. Rich;Gino T. Trevisani;T. Rabinowitz - 通讯作者:
T. Rabinowitz
VC Dimension and Irregular Pairs
VC维数和不规则对
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nate Ackerman;Anton Bernshteyn;Cameron Freer;N. Ackerman;Julian Asilis;Jieqi Di;Johanna Franklin;Meng;Ho;Julia Knight;Jun Hu;Yilun Huang;Sounak Chakraborty;Anjishnu Banerjee;Rukayya Ibrahim - 通讯作者:
Rukayya Ibrahim
Electroconvulsive Therapy for Depression When Substance Use Disorders are Comorbid: A Case Report and Review of the Literature
药物使用障碍合并症时抑郁症的电休克疗法:病例报告和文献综述
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amanda I. Silverio;M. C. Squires;Julia Knight - 通讯作者:
Julia Knight
A New Model for Season-Of-Birth Research to Improve Translational Value
一种提高转化价值的出生季节研究新模式
- DOI:
10.1016/j.biopsych.2025.02.140 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Robert Levitan;Cindy Zhang;Julia Knight;Rayjean Hung;Mark Wade;Stephanie Ameis;Kashtin Bertoni;Jody Wong;Kellie Murphy;Stephen Lye;Stephen Matthews - 通讯作者:
Stephen Matthews
Julia Knight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Knight', 18)}}的其他基金
Artists' Film and Video Database/Digitised Collection Projects: Addressing sustainability and historiography
艺术家电影和视频数据库/数字化收藏项目:解决可持续性和史学问题
- 批准号:
AH/E510205/1 - 财政年份:2007
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9504594 - 财政年份:1995
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9001513 - 财政年份:1990
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
8701559 - 财政年份:1987
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
相似海外基金
TENSAR - Theory and Experiment for Nuclear Structure, Astrophysics & Reactions
TENSAR - 核结构、天体物理学的理论与实验
- 批准号:
ST/Y000358/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
- 批准号:
2344734 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
- 批准号:
23K14156 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship Award
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant