Computable Structure Theory
可计算结构理论
基本信息
- 批准号:1800692
- 负责人:
- 金额:$ 16.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knight works in computability theory, a branch of mathematical logic. There is a body of work designing procedures for computing certain functions, and there is work designing useful approximation procedures for other functions. There are many real-world functions (involving population, revenue, location of objects in space or events in time, etc.) that we can know only through approximations. Knight is particularly interested in computability and computable approximation in number systems and other algebraic structures. Traditionally, computability theory has dealt with countable objects. However, important algebraic structures such as the field of real numbers are uncountable. Some of the problems that interest Knight involve computability in uncountable structures. With Karen Lange and Reed Solomon, Knight is trying to measure the complexity of the process of finding roots of polynomials in fields of generalized power series. Some of the ideas go back to Newton. With Uri Andrews, Knight is interested in the problem of when an elementary first order theory that is well-behaved from the point of view of model theory has a computable model. Andrews and Knight have a result for "strongly minimal" theories, with conditions on the complexity of fragments of the theory guaranteeing that the countable models all have computable copies. For some cases, the models are produced by "workers" constructions, involving nested approximations. Knight is interested in applying the techniques of computability to uncountable structures. There are different approaches. Some involve changing the definition of what is computable. Noah Schweber defined a reducibility that allows us to compare the computing power of structures of arbitrary cardinality, using the standard computability notions. The idea is to collapse cardinals so that the structures being compared become countable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
奈特从事可计算性理论的研究,这是数理逻辑的一个分支。 有一个机构的工作设计程序计算某些功能,并有工作设计有用的近似程序的其他功能。 有许多现实世界的功能(涉及人口,收入,空间中的对象或时间中的事件的位置等)。我们只能通过近似来了解。 奈特对数字系统和其他代数结构中的可计算性和可计算近似特别感兴趣。 传统上,可计算性理论处理可数对象。 然而,像真实的数域这样重要的代数结构是不可数的。 一些问题的兴趣骑士涉及可计算性的不可数结构。 与卡伦兰格和里德所罗门,骑士正试图衡量复杂的过程中找到根的多项式领域的广义幂级数。 有些想法可以追溯到牛顿。 与乌里安德鲁斯,骑士感兴趣的问题时,一个基本的一阶理论,是行为良好的角度来看,模型理论有一个可计算的模型。 安德鲁斯和奈特对“强极小”理论有一个结果,条件是理论片段的复杂性保证可数模型都有可计算的副本。 在某些情况下,模型是由“工人”结构产生的,涉及嵌套近似。 奈特对将可计算性技术应用于不可数结构很感兴趣。 有不同的方法。 有些涉及到改变什么是可计算的定义。 Noah Schweber定义了一个约简,允许我们使用标准的可计算性概念来比较任意基数结构的计算能力。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpreting a field in its Heisenberg group
解释海森堡群中的域
- DOI:10.1017/jsl.2021.107
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alvir, R.;Calvert, W.;Goodman, G.;Harizanov, V.;Knight, J.;Morozov, A.;Miller, R.;Soskova, A.;Weisshaar, R.
- 通讯作者:Weisshaar, R.
Copying one of a pair of structures
复制一对结构中的一个
- DOI:10.1017/jsl.2021.89
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alvir, Rachael;Burchfield, Hannah;Knight, Julia F.
- 通讯作者:Knight, Julia F.
Expanding the reals by continuous functions adds no computational power
通过连续函数扩展实数不会增加计算能力
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Andrews, U.;Knight, J. F..;Kuyper, R.;Miller, J. S.;and Soskova, M.
- 通讯作者:and Soskova, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Knight其他文献
Predictors of Electroconvulsive Therapy Use in a Large Inpatient Psychiatry Population
大量住院精神病患者中电惊厥治疗使用的预测因素
- DOI:
10.1097/yct.0000000000000461 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Julia Knight;Micaela Jantzi;J. Hirdes;T. Rabinowitz - 通讯作者:
T. Rabinowitz
Clomiphene-Associated Suicide Behavior in a Man Treated for Hypogonadism: Case Report and Review of The Literature.
一名接受性腺功能减退症治疗的男性与克罗米芬相关的自杀行为:病例报告和文献综述。
- DOI:
10.1016/j.psym.2015.06.003 - 发表时间:
2015 - 期刊:
- 影响因子:3.4
- 作者:
Julia Knight;Amrita S. Pandit;A. Rich;Gino T. Trevisani;T. Rabinowitz - 通讯作者:
T. Rabinowitz
VC Dimension and Irregular Pairs
VC维数和不规则对
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nate Ackerman;Anton Bernshteyn;Cameron Freer;N. Ackerman;Julian Asilis;Jieqi Di;Johanna Franklin;Meng;Ho;Julia Knight;Jun Hu;Yilun Huang;Sounak Chakraborty;Anjishnu Banerjee;Rukayya Ibrahim - 通讯作者:
Rukayya Ibrahim
Electroconvulsive Therapy for Depression When Substance Use Disorders are Comorbid: A Case Report and Review of the Literature
药物使用障碍合并症时抑郁症的电休克疗法:病例报告和文献综述
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amanda I. Silverio;M. C. Squires;Julia Knight - 通讯作者:
Julia Knight
A New Model for Season-Of-Birth Research to Improve Translational Value
一种提高转化价值的出生季节研究新模式
- DOI:
10.1016/j.biopsych.2025.02.140 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Robert Levitan;Cindy Zhang;Julia Knight;Rayjean Hung;Mark Wade;Stephanie Ameis;Kashtin Bertoni;Jody Wong;Kellie Murphy;Stephen Lye;Stephen Matthews - 通讯作者:
Stephen Matthews
Julia Knight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Knight', 18)}}的其他基金
Artists' Film and Video Database/Digitised Collection Projects: Addressing sustainability and historiography
艺术家电影和视频数据库/数字化收藏项目:解决可持续性和史学问题
- 批准号:
AH/E510205/1 - 财政年份:2007
- 资助金额:
$ 16.03万 - 项目类别:
Research Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9504594 - 财政年份:1995
- 资助金额:
$ 16.03万 - 项目类别:
Standard Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9001513 - 财政年份:1990
- 资助金额:
$ 16.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
8701559 - 财政年份:1987
- 资助金额:
$ 16.03万 - 项目类别:
Continuing Grant
相似海外基金
TENSAR - Theory and Experiment for Nuclear Structure, Astrophysics & Reactions
TENSAR - 核结构、天体物理学的理论与实验
- 批准号:
ST/Y000358/1 - 财政年份:2024
- 资助金额:
$ 16.03万 - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 16.03万 - 项目类别:
Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
- 批准号:
2344734 - 财政年份:2024
- 资助金额:
$ 16.03万 - 项目类别:
Standard Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Standard Grant
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
- 批准号:
23K14156 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Fellowship Award
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Standard Grant