Collaboration in Computability
可计算性协作
基本信息
- 批准号:1600625
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support activities of a research network of mathematicians working in computability theory. This project will facilitate collaborative work of faculty and graduate students from the U.S., Russia, Kazakhstan and Bulgaria. The research is in quickly developing areas of computability, and this project has two broad goals: the first goal is more rapid scientific progress resulting from a network of collaborators, from all four countries, enabling them to pool their ideas to solve fundamental problems. The second goal is to provide opportunities for students and young researchers to participate actively in the world community of scientists.Computability as a research area has blossomed in recent years, with many exciting new results that involve combining techniques from pure computability with sophisticated algebra, model theory, set theory, and/or probability. There are also stronger ties with computer science. The proposal named 20 senior participants, and students and postdocs will also participate in the activities supported by the grant. The proposed work includes a variety of problems. There are problems on the difficulty in building a copy of a structure (degree spectra), and on the relative computing power of structures (Muchnik reducibility). There are problems on the internal complexity of structures (Scott rank) and on the difficulty of describing a structure, measured by the complexity of a ``Scott sentence''. In particular, there are problems on Scott sentences for groups. Some problems concern uncountable structures such as the ordered field of reals. There are problems on ``jumps'' of structures and a strong notion of ``jump inversion''. There are problems on complexity of isomorphisms, and on automorphisms, in particular, for vector spaces. There are problems on degree structures (enumeration degrees, and ``continuous'' degrees). There are problems on ``numberings''. At least two problems, one on the ``Hanf number'' for Scott sentences of computable structures, and one on the relative computing power of the ordered field of reals and an expansion by an arbitrary continuous function, have been solved since the proposal was submitted.
该奖项将支持从事可计算理论的数学家研究网络的活动。该项目将促进来自美国、俄罗斯、哈萨克斯坦和保加利亚的教师和研究生的合作工作。这项研究是在快速发展的可计算领域进行的,该项目有两个广泛的目标:第一个目标是由来自所有四个国家的合作者组成的网络带来更快的科学进步,使他们能够汇集他们的想法来解决基本问题。第二个目标是为学生和年轻研究人员提供积极参与世界科学家社区的机会。近年来,可计算性作为一个研究领域蓬勃发展,许多令人兴奋的新结果涉及将纯可计算性与复杂代数、模型论、集合论和/或概率论相结合的技术。与计算机科学的联系也更紧密。该提案提名了20名高级参与者,学生和博士后也将参与该基金支持的活动。提议的工作包括各种各样的问题。在构造结构副本的难度(度谱)和结构的相对计算能力(Muchnik可约性)上存在问题。在结构的内部复杂性(斯科特等级)和用“斯科特句”的复杂性来衡量描述结构的难度上存在问题。特别是群体的斯科特句存在问题。一些问题涉及不可数结构,如实数的有序域。在结构的“跳跃”和“跳跃反转”概念上存在问题。关于同构的复杂性问题,特别是关于向量空间的自同构的复杂性问题。在学位结构(枚举学位和“连续”学位)上存在问题。“编号”有问题。自该方案提出以来,至少解决了两个问题,一个是关于可计算结构Scott句的“汉夫数”问题,另一个是关于实数有序域的相对计算能力和任意连续函数的展开问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpreting a field in its Heisenberg group
解释海森堡群中的域
- DOI:10.1017/jsl.2021.107
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alvir, R.;Calvert, W.;Goodman, G.;Harizanov, V.;Knight, J.;Morozov, A.;Miller, R.;Soskova, A.;Weisshaar, R.
- 通讯作者:Weisshaar, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Knight其他文献
Predictors of Electroconvulsive Therapy Use in a Large Inpatient Psychiatry Population
大量住院精神病患者中电惊厥治疗使用的预测因素
- DOI:
10.1097/yct.0000000000000461 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Julia Knight;Micaela Jantzi;J. Hirdes;T. Rabinowitz - 通讯作者:
T. Rabinowitz
Clomiphene-Associated Suicide Behavior in a Man Treated for Hypogonadism: Case Report and Review of The Literature.
一名接受性腺功能减退症治疗的男性与克罗米芬相关的自杀行为:病例报告和文献综述。
- DOI:
10.1016/j.psym.2015.06.003 - 发表时间:
2015 - 期刊:
- 影响因子:3.4
- 作者:
Julia Knight;Amrita S. Pandit;A. Rich;Gino T. Trevisani;T. Rabinowitz - 通讯作者:
T. Rabinowitz
VC Dimension and Irregular Pairs
VC维数和不规则对
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nate Ackerman;Anton Bernshteyn;Cameron Freer;N. Ackerman;Julian Asilis;Jieqi Di;Johanna Franklin;Meng;Ho;Julia Knight;Jun Hu;Yilun Huang;Sounak Chakraborty;Anjishnu Banerjee;Rukayya Ibrahim - 通讯作者:
Rukayya Ibrahim
Electroconvulsive Therapy for Depression When Substance Use Disorders are Comorbid: A Case Report and Review of the Literature
药物使用障碍合并症时抑郁症的电休克疗法:病例报告和文献综述
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amanda I. Silverio;M. C. Squires;Julia Knight - 通讯作者:
Julia Knight
A New Model for Season-Of-Birth Research to Improve Translational Value
一种提高转化价值的出生季节研究新模式
- DOI:
10.1016/j.biopsych.2025.02.140 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Robert Levitan;Cindy Zhang;Julia Knight;Rayjean Hung;Mark Wade;Stephanie Ameis;Kashtin Bertoni;Jody Wong;Kellie Murphy;Stephen Lye;Stephen Matthews - 通讯作者:
Stephen Matthews
Julia Knight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Knight', 18)}}的其他基金
Artists' Film and Video Database/Digitised Collection Projects: Addressing sustainability and historiography
艺术家电影和视频数据库/数字化收藏项目:解决可持续性和史学问题
- 批准号:
AH/E510205/1 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9504594 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9001513 - 财政年份:1990
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
8701559 - 财政年份:1987
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
New Developments in the Philosophical Foundations of Computability Theory
可计算性理论哲学基础的新进展
- 批准号:
22KF0258 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152098 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152095 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152182 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
- 批准号:
2152262 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual