Computable Structure Theory
可计算结构理论
基本信息
- 批准号:0139626
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knight and her students will work on various aspects ofcomputable structure theory. Knight plans to continue work withD'Aquino on weak fragments of arithmetic. She expects also tocontinue work with Goncharov and Harizanov, with Young, and withShore, on a collection of inter-related problems involvingcomplicated relations on computable structures, structures ofhigh rank, and paths through Kleene's O. She is currentlyworking with Csima, Hirschfeldt, and Soare on prime models andlowness properties. She plans to work with Lempp, McCoy, andSolomon on Boolean algebras. The funds are mainly for studenttravel and books. The remainder is for partial support of theNotre Dame Logic Seminar. Currently, Knight has two students.Andrew Arana, who may finish this summer, has a number of resultson complexity in arithmetic, using some new independent sentences(variants of the Godel-Rosser sentence). Arana is nowconcentrating on problems of a more foundational nature. WesleyCalvert, a second year student, is working on complexity of theisomorphism problem for various familiar classes of computablestructures. He already has results for several classes offields. Knight may acquire new students during the period of thegrant.The goal of Knight's research, and that of students working withher, is to determine which aspects of mathematical structures arecomputable, and for those which are not computable, whether thereis some nice, computable approximation. The grant willfacilitate new work of this kind. There is a largergoal---enabling students to become first-rate researchscientists. The grant will be used mainly for student travel andbooks. Without money for books, Knight's students would hardlyown any. She has found that, given money to buy the mostimportant references, her students read much more than they wouldotherwise. They see how the problems they are working on arose,and what their work means for the field as a whole. Knight'spast students, and other logic students at Notre Dame, havebenefited tremendously from opportunities to travel to meetings.They meet researchers from other universities and hear about newdevelopments. As soon as they have results of their own, theygive talks, and they get valuable suggestions. In short, theyhave the opportunity, as students, to join the community ofresearch mathematicians.
奈特和她的学生将研究可计算结构理论的各个方面。奈特计划继续与达阿基诺一起研究薄弱的算术片段。她还希望继续与Goncharov、Harizanov、Young和shore合作,研究一系列相互关联的问题,包括可计算结构、高阶结构和Kleene o的路径上的复杂关系。她目前正在与Csima、Hirschfeldt和Soare合作,研究质数模型和低度性质。她计划与Lempp、McCoy和solomon一起研究布尔代数。这些资金主要用于学生的旅行和书籍。其余部分用于巴黎圣母院逻辑研讨会的部分支持。目前,奈特有两名学生。安德鲁·阿拉纳(Andrew Arana)可能会在今年夏天完成这项研究,他使用了一些新的独立句子(哥德尔-罗瑟句的变体),得出了一些关于算术复杂性的结果。阿拉纳现在正专注于更基本的问题。二年级学生WesleyCalvert正在研究各种熟悉的可计算结构类的同构问题的复杂性。他已经有好几门课的成绩了。在助学金期间,奈特大学可以招收新的学生。奈特和她的学生们的研究目标是确定数学结构的哪些方面是可计算的,而对于那些不可计算的,是否有一些不错的、可计算的近似。这笔拨款将促进这类新工作的开展。有一个更大的目标——让学生成为一流的研究科学家。补助金将主要用于学生的旅行和书本费。如果没有钱买书,奈特的学生几乎不会拥有任何一本书。她发现,如果给钱买最重要的参考资料,她的学生们的阅读量就会大大增加。他们看到他们正在研究的问题是如何产生的,以及他们的工作对整个领域的意义。奈特以前的学生,以及圣母大学其他逻辑专业的学生,都从参加会议的机会中受益匪浅。他们会见来自其他大学的研究人员,并听取最新进展。一旦他们有了自己的结果,他们就会发表演讲,并得到有价值的建议。简而言之,作为学生,他们有机会加入研究型数学家的圈子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Knight其他文献
Predictors of Electroconvulsive Therapy Use in a Large Inpatient Psychiatry Population
大量住院精神病患者中电惊厥治疗使用的预测因素
- DOI:
10.1097/yct.0000000000000461 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Julia Knight;Micaela Jantzi;J. Hirdes;T. Rabinowitz - 通讯作者:
T. Rabinowitz
Clomiphene-Associated Suicide Behavior in a Man Treated for Hypogonadism: Case Report and Review of The Literature.
一名接受性腺功能减退症治疗的男性与克罗米芬相关的自杀行为:病例报告和文献综述。
- DOI:
10.1016/j.psym.2015.06.003 - 发表时间:
2015 - 期刊:
- 影响因子:3.4
- 作者:
Julia Knight;Amrita S. Pandit;A. Rich;Gino T. Trevisani;T. Rabinowitz - 通讯作者:
T. Rabinowitz
VC Dimension and Irregular Pairs
VC维数和不规则对
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nate Ackerman;Anton Bernshteyn;Cameron Freer;N. Ackerman;Julian Asilis;Jieqi Di;Johanna Franklin;Meng;Ho;Julia Knight;Jun Hu;Yilun Huang;Sounak Chakraborty;Anjishnu Banerjee;Rukayya Ibrahim - 通讯作者:
Rukayya Ibrahim
Electroconvulsive Therapy for Depression When Substance Use Disorders are Comorbid: A Case Report and Review of the Literature
药物使用障碍合并症时抑郁症的电休克疗法:病例报告和文献综述
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amanda I. Silverio;M. C. Squires;Julia Knight - 通讯作者:
Julia Knight
A New Model for Season-Of-Birth Research to Improve Translational Value
一种提高转化价值的出生季节研究新模式
- DOI:
10.1016/j.biopsych.2025.02.140 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Robert Levitan;Cindy Zhang;Julia Knight;Rayjean Hung;Mark Wade;Stephanie Ameis;Kashtin Bertoni;Jody Wong;Kellie Murphy;Stephen Lye;Stephen Matthews - 通讯作者:
Stephen Matthews
Julia Knight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Knight', 18)}}的其他基金
Artists' Film and Video Database/Digitised Collection Projects: Addressing sustainability and historiography
艺术家电影和视频数据库/数字化收藏项目:解决可持续性和史学问题
- 批准号:
AH/E510205/1 - 财政年份:2007
- 资助金额:
$ 3.72万 - 项目类别:
Research Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9504594 - 财政年份:1995
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
9001513 - 财政年份:1990
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
Mathematical Sciences: Recursive Model Theory
数学科学:递归模型理论
- 批准号:
8701559 - 财政年份:1987
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
相似海外基金
TENSAR - Theory and Experiment for Nuclear Structure, Astrophysics & Reactions
TENSAR - 核结构、天体物理学的理论与实验
- 批准号:
ST/Y000358/1 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
- 批准号:
2344734 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
- 批准号:
23K14156 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Fellowship Award
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant