Inverse Scattering for Obstacles and Related Problems

障碍物和相关问题的逆散射

基本信息

  • 批准号:
    9970565
  • 负责人:
  • 金额:
    $ 24.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

The proposers will work on inverse coefficient problems where the given data is the scattering amplitude at fixed energy. The desired result is that this determines the unknown coefficients. Specifically,they will consider this problem for the acoustic wave equation inan exterior domain with the sound speed and the boundary of the domain as unknowns to be determined by the scattering data. They arealso interested in the related problem of recovering metrics modulodiffeomorphisms from scattering data for Laplace-Beltrami operator.The proposed method of attack is via integral equations that they derived from Faddeev-type Green's functions in earlier work. The preceding problems will be posed in three or more dimensions. In twodimensions this approach needs to be combined with other methods likethe d-bar equation. The proposers will investigate ways of doing thisfor the wave equation in an anisotropic medium. Inverse scattering problems arise when one wishes to recover physicalproperties of an object from data obtained by remote observations.Interpreted broadly, they include methods oil exploration and medicalimaging. The problems that will be studied in this project include showing that it is theoretically possible to determine both the acousticproperties of a medium surrounding a solid obstacle and the shape of the obstacle itself from reflected sound waves.
当给定的数据是固定能量下的散射幅度时,提出者将处理反系数问题。期望的结果是,这确定了未知系数。具体地说,他们将考虑外部区域中的声波方程的这个问题,该区域的声速和边界是由散射数据确定的未知数。他们还对从Laplace-Beltrami算子的散射数据中恢复度量模-微分同态的相关问题感兴趣。所提出的攻击方法是通过他们在早期工作中从Faddeev型格林函数导出的积分方程来实现的。前面的问题将从三个或更多个维度提出。在两个维度上,这种方法需要与d-bar方程等其他方法相结合。提出者将对各向异性介质中的波动方程进行研究。当人们希望从远程观测获得的数据中恢复物体的物理性质时,逆散射问题就产生了。广义地说,它们包括石油勘探和医学成像方法。本项目要研究的问题包括:理论上可以从反射声波中确定固体障碍物周围介质的声学性质和障碍物本身的形状。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Ralston其他文献

Iatrogenic aortic dissection after minimally invasive aortic valve replacement: a case report
  • DOI:
    10.1186/s13019-016-0531-y
  • 发表时间:
    2016-08-24
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mohamed Ehab Ramadan;Lamia Buohliqah;Juan Crestanello;James Ralston;David Igoe;Hamdy Awad
  • 通讯作者:
    Hamdy Awad
Hyponatremia decreases left ventricular ejection fraction after ischemia by modulating NO production
  • DOI:
    10.1016/j.jamcollsurg.2012.06.114
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Weiping Ye;Daniel Lee;James Ralston;Jay Zweier;Juan Crestanello
  • 通讯作者:
    Juan Crestanello
Experimental Validation of Cryobot Thermal Models for the Exploration of Ocean Worlds
用于海洋世界探索的低温机器人热模型的实验验证
  • DOI:
    10.3847/psj/acc2b7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paula do Vale Pereira;Michael J. Durka;B. Hogan;K. Richmond;Miles W. E. Smith;D. Winebrenner;W. T. Elam;Benjamin J. Hockman;A. Lopez;Neal Tanner;Joshua Moor;James Ralston;Miriam Alexander;W. Zimmerman;Nolan Flannery;William Kuhl;Sarah E. Wielgosz;K. Cahoy;T. Cwik;W. Stone
  • 通讯作者:
    W. Stone
P390: Health system direct contact of relatives for cascade testing: Reach and initial acceptability in a prospective intervention study*
  • DOI:
    10.1016/j.gimo.2023.100426
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nora Henrikson;Jamilyn Zepp;Paula Blasi;Melissa Anderson;Aaron Scrol;Jane Grafton;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig
  • 通讯作者:
    Kathleen Leppig
P679: “I would have had no idea”: Families’ experiences with a new US health system-mediated direct contact program
  • DOI:
    10.1016/j.gimo.2023.100751
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paula Blasi;Jamilyn Zepp;Aaron Scrol;Melissa Anderson;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig;Nora Henrikson
  • 通讯作者:
    Nora Henrikson

James Ralston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Ralston', 18)}}的其他基金

Spectral Asymptotics for Non-self-adjoint Semiclassical Operators
非自伴半经典算子的谱渐近
  • 批准号:
    0304970
  • 财政年份:
    2003
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Inverse Boundary Value and Inverse Scattering Problems
逆边界值和逆散射问题
  • 批准号:
    0139192
  • 财政年份:
    2002
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
  • 批准号:
    9896076
  • 财政年份:
    1997
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Scattering Problems
数学科学:逆散射问题
  • 批准号:
    9622310
  • 财政年份:
    1996
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
  • 批准号:
    9501033
  • 财政年份:
    1995
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
  • 批准号:
    9305882
  • 财政年份:
    1993
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Well-Posed Inverse Problems
适定反问题
  • 批准号:
    9209738
  • 财政年份:
    1992
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
  • 批准号:
    8902246
  • 财政年份:
    1989
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
  • 批准号:
    8703500
  • 财政年份:
    1987
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
  • 批准号:
    8502326
  • 财政年份:
    1985
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
  • 批准号:
    2336506
  • 财政年份:
    2024
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
  • 批准号:
    EP/Z531194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Research Grant
CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
  • 批准号:
    2339616
  • 财政年份:
    2024
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
CAREER: Unravelling the Strong Interaction with High-Energy Nuclear Scattering
职业生涯:揭示高能核散射的强相互作用
  • 批准号:
    2239274
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on the correlation bewteen the hierarchical structure of foods and texture by synchrotron X-ray scattering method
同步辐射X射线散射法研究食品层次结构与质地的相关性
  • 批准号:
    23K05124
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding the Influences of Microphysical Interactions with Pollution and Water on Dust Scattering Properties and Radiative Effects
了解污染物和水的微物理相互作用对粉尘散射特性和辐射效应的影响
  • 批准号:
    2232138
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Continuing Grant
Simultaneous Wide and Small Angle Operando Neutron Total Scattering to Probe Electrolyte Ordering in Supercapacitors
同时进行广角和小角操作中子全散射来探测超级电容器中的电解质排序
  • 批准号:
    2879388
  • 财政年份:
    2023
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了