Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
基本信息
- 批准号:8902246
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-07-01 至 1993-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this project is one of determining the structure of differential operators from information about the spectrum of the operator. In non-mathematical terms, this means that one is attempting to reconstruct an object (such as an obstruction to a flow) or a force field from data obtained by remote observations. This particular work will concentrate on reconstruction from quantum backscattering data. Several issues arise. First, there is the question of whether or not sufficient information is available for the reconstruction, whether the resulting potential (the object sought) is uniquely determined and the problem of reconstructing the potential by some practical means. Much of the work is a continuation of efforts to understand the three-dimensional Schroedinger equation. This equation has been studied extensively in one dimension. In three dimensions, the obstacles to progress are much greater, and it is only recently that mathematical research in the area has shown any progress. Solutions are given in terms of a pure exponential part plus a term which is recovered from knowledge of the physical properties of the problem - the scattering amplitude. The inverse scattering problem consists of recovering the potential part of the Schroedinger equation from the scattering amplitude. An immediate problem one encounters is that the inverse problem is over-determined; one is forced to characterize those scattering amplitudes which can arise from three- dimensional potentials. One procedure currently under investigation is to restrict the scattering amplitude (normally defined on five-dimensional space) to three-dimensional manifolds. One of these is the so-called backscattering data. This choice has led to reasonably good progress in those cases where the potential is known to be small. The present work will continue along the same vein. A primary objective is to define the proper function classes which will give a controlled, well-defined backscattering map. In addtion, work will continue on related issues of finding minimal data sets necessary to solve the inverse problem, specifying the range of the inverse map and showing that the Frechet derivative of the map is invertible.
该项目的重点是确定 结构的微分算子的信息 运营商的频谱。 用非数学术语来说,这意味着 一个人试图重建一个对象(如 阻碍流动)或力场, 远程观察 这项工作将集中在 从量子背散射数据重建。 若干问题 起来。 第一个问题是, 信息可用于重建,无论 结果电势(所寻求的对象)是唯一确定的 以及通过一些实际的 手段 大部分工作都是为了理解 三维薛定谔方程 该方程具有 在一个维度上被广泛研究。 在三维空间中, 进步的障碍要大得多,这只是 最近,该地区的数学研究表明, 中求进工作总 解以纯指数形式给出 一部分加一个术语,从知识的恢复, 问题的物理性质-散射振幅。 逆散射问题包括恢复 薛定谔方程的散射势部分 振幅 人们遇到的一个直接问题是, 逆问题是超定的;人们被迫描述 这些散射振幅可以由三个- 维度潜力 目前正在研究的一个程序是限制 散射振幅(通常定义在五维上 空间)到三维流形。 其中之一是 所谓的反向散射数据。 这种选择合理地导致了 在那些已知潜在的情况下取得良好进展 小了 目前的工作将继续沿着同样的思路进行。 一 主要目标是定义适当的函数类, 将给出一个可控的、清晰的后向散射图。 在 此外,将继续就有关问题开展工作, 解决逆问题所需的数据集,指定 逆映射的范围,并表明Frechet导数 地图是可逆的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Ralston其他文献
Iatrogenic aortic dissection after minimally invasive aortic valve replacement: a case report
- DOI:
10.1186/s13019-016-0531-y - 发表时间:
2016-08-24 - 期刊:
- 影响因子:1.500
- 作者:
Mohamed Ehab Ramadan;Lamia Buohliqah;Juan Crestanello;James Ralston;David Igoe;Hamdy Awad - 通讯作者:
Hamdy Awad
Hyponatremia decreases left ventricular ejection fraction after ischemia by modulating NO production
- DOI:
10.1016/j.jamcollsurg.2012.06.114 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Weiping Ye;Daniel Lee;James Ralston;Jay Zweier;Juan Crestanello - 通讯作者:
Juan Crestanello
Experimental Validation of Cryobot Thermal Models for the Exploration of Ocean Worlds
用于海洋世界探索的低温机器人热模型的实验验证
- DOI:
10.3847/psj/acc2b7 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paula do Vale Pereira;Michael J. Durka;B. Hogan;K. Richmond;Miles W. E. Smith;D. Winebrenner;W. T. Elam;Benjamin J. Hockman;A. Lopez;Neal Tanner;Joshua Moor;James Ralston;Miriam Alexander;W. Zimmerman;Nolan Flannery;William Kuhl;Sarah E. Wielgosz;K. Cahoy;T. Cwik;W. Stone - 通讯作者:
W. Stone
P390: Health system direct contact of relatives for cascade testing: Reach and initial acceptability in a prospective intervention study*
- DOI:
10.1016/j.gimo.2023.100426 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Nora Henrikson;Jamilyn Zepp;Paula Blasi;Melissa Anderson;Aaron Scrol;Jane Grafton;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig - 通讯作者:
Kathleen Leppig
P679: “I would have had no idea”: Families’ experiences with a new US health system-mediated direct contact program
- DOI:
10.1016/j.gimo.2023.100751 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Paula Blasi;Jamilyn Zepp;Aaron Scrol;Melissa Anderson;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig;Nora Henrikson - 通讯作者:
Nora Henrikson
James Ralston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Ralston', 18)}}的其他基金
Spectral Asymptotics for Non-self-adjoint Semiclassical Operators
非自伴半经典算子的谱渐近
- 批准号:
0304970 - 财政年份:2003
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Inverse Boundary Value and Inverse Scattering Problems
逆边界值和逆散射问题
- 批准号:
0139192 - 财政年份:2002
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Inverse Scattering for Obstacles and Related Problems
障碍物和相关问题的逆散射
- 批准号:
9970565 - 财政年份:1999
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
- 批准号:
9896076 - 财政年份:1997
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Problems
数学科学:逆散射问题
- 批准号:
9622310 - 财政年份:1996
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
- 批准号:
9501033 - 财政年份:1995
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
- 批准号:
9305882 - 财政年份:1993
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
- 批准号:
8703500 - 财政年份:1987
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
- 批准号:
8502326 - 财政年份:1985
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Field-Experimental Sciences of Sustainable Well-being
可持续福祉的现场实验科学
- 批准号:
21K03058 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supporting Student Mental Health, Well-being, and Resilience to Advance Undergraduate Degree Completion in Physical Sciences, Engineering, and Mathematics
支持学生的心理健康、福祉和适应力,以促进物理科学、工程和数学本科学位的完成
- 批准号:
2029082 - 财政年份:2020
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Toward a Theory of Well-Founded Orderings for Use in Automated Deduction
数学科学:走向一种用于自动演绎的有根据的排序理论
- 批准号:
9696043 - 财政年份:1995
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Toward a Theory of Well-Founded Orderings for Use in Automated Deduction
数学科学:走向一种用于自动演绎的有根据的排序理论
- 批准号:
9510164 - 财政年份:1995
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
- 批准号:
9305882 - 财政年份:1993
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Well-Posed Numerical Calculations of Free-Surface Flows
数学科学:自由表面流的适定数值计算
- 批准号:
9308075 - 财政年份:1993
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Graph Minors and Well-Quasi-Ordering
数学科学:图次要和良好拟序
- 批准号:
9103480 - 财政年份:1991
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Well-Partial-Ordering Theory and Ramsey Theory
数学科学:良好偏序理论和拉姆齐理论
- 批准号:
9002155 - 财政年份:1990
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hypergeometric Series Very-Well- Poised on Semisimple Lie Algebras and Multivariate Orthogonal Polynomials
数学科学:半简单李代数和多元正交多项式上的超几何级数非常平衡
- 批准号:
9002342 - 财政年份:1990
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems Related to Graph Well-Quasi Ordering
数学科学:与图井拟序相关的问题
- 批准号:
8504054 - 财政年份:1985
- 资助金额:
$ 25.95万 - 项目类别:
Continuing grant