Spectral Asymptotics for Non-self-adjoint Semiclassical Operators

非自伴半经典算子的谱渐近

基本信息

  • 批准号:
    0304970
  • 负责人:
  • 金额:
    $ 9.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

PI: James V. Ralston (for Hatrik), UCLADMS-0304970ABSTRACT This proposal presents problems in spectral theory of non-self-adjoint differential operators in the semi-classical regime. The proposer seeks precise estimates on the asymptotic behavior of the eigenvalues of small perturbations of self-adjoint operators on compact domains in several settings. In closely related projects he plans to apply recently developed techniques to the problem of finding asymptotics (counting functions) for the scattering poles associated withconvex obstacles and the barrier top resonances for Schroedinger operators.This work studies the propagation of waves in settings where some form of dissipation or the possibility of propagation to infinity gives rise to waves which decay to zero as time increases. The rates of decay and frequency of these decaying modes are encoded in sequences of complex eigenvalues or resonances associated with these problems. Studying the behavior of these sequences can lead to better understanding of the relation between rates of decay and theunderlying structure of the system. Such information has potential application in determining the interior structure of objects from their resonant frequencies in nondestructive testing.
主要研究者:Ralston(for Hatrik),UCLADMS-0304970摘要该方案提出了半经典区域中非自伴微分算子谱理论的问题。提出者寻求精确的估计的小扰动的自伴算子的特征值的渐近行为的紧域上在几个设置。在密切相关的项目中,他计划应用最近开发的技术来寻找问题的渐近性(计数功能)的散射极点与凸障碍和障碍顶部共振的薛定谔operators.This工作研究波的传播设置中的某种形式的耗散或传播到无穷大的可能性产生的波衰减到零随着时间的增加。这些衰减模式的衰减率和频率被编码在与这些问题相关联的复特征值或共振序列中。研究这些序列的行为可以更好地理解衰变率和系统的基本结构之间的关系。这些信息在无损检测中从物体的共振频率确定物体的内部结构方面具有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Ralston其他文献

Iatrogenic aortic dissection after minimally invasive aortic valve replacement: a case report
  • DOI:
    10.1186/s13019-016-0531-y
  • 发表时间:
    2016-08-24
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mohamed Ehab Ramadan;Lamia Buohliqah;Juan Crestanello;James Ralston;David Igoe;Hamdy Awad
  • 通讯作者:
    Hamdy Awad
Hyponatremia decreases left ventricular ejection fraction after ischemia by modulating NO production
  • DOI:
    10.1016/j.jamcollsurg.2012.06.114
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Weiping Ye;Daniel Lee;James Ralston;Jay Zweier;Juan Crestanello
  • 通讯作者:
    Juan Crestanello
Experimental Validation of Cryobot Thermal Models for the Exploration of Ocean Worlds
用于海洋世界探索的低温机器人热模型的实验验证
  • DOI:
    10.3847/psj/acc2b7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paula do Vale Pereira;Michael J. Durka;B. Hogan;K. Richmond;Miles W. E. Smith;D. Winebrenner;W. T. Elam;Benjamin J. Hockman;A. Lopez;Neal Tanner;Joshua Moor;James Ralston;Miriam Alexander;W. Zimmerman;Nolan Flannery;William Kuhl;Sarah E. Wielgosz;K. Cahoy;T. Cwik;W. Stone
  • 通讯作者:
    W. Stone
P390: Health system direct contact of relatives for cascade testing: Reach and initial acceptability in a prospective intervention study*
  • DOI:
    10.1016/j.gimo.2023.100426
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nora Henrikson;Jamilyn Zepp;Paula Blasi;Melissa Anderson;Aaron Scrol;Jane Grafton;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig
  • 通讯作者:
    Kathleen Leppig
P679: “I would have had no idea”: Families’ experiences with a new US health system-mediated direct contact program
  • DOI:
    10.1016/j.gimo.2023.100751
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paula Blasi;Jamilyn Zepp;Aaron Scrol;Melissa Anderson;John Ewing;James Ralston;Stephanie Fullerton;Kathleen Leppig;Nora Henrikson
  • 通讯作者:
    Nora Henrikson

James Ralston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Ralston', 18)}}的其他基金

Inverse Boundary Value and Inverse Scattering Problems
逆边界值和逆散射问题
  • 批准号:
    0139192
  • 财政年份:
    2002
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant
Inverse Scattering for Obstacles and Related Problems
障碍物和相关问题的逆散射
  • 批准号:
    9970565
  • 财政年份:
    1999
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
  • 批准号:
    9896076
  • 财政年份:
    1997
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Scattering Problems
数学科学:逆散射问题
  • 批准号:
    9622310
  • 财政年份:
    1996
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Scattering Theory for N-particle Systems
数学科学:N 粒子系统的散射理论
  • 批准号:
    9501033
  • 财政年份:
    1995
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
  • 批准号:
    9305882
  • 财政年份:
    1993
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant
Well-Posed Inverse Problems
适定反问题
  • 批准号:
    9209738
  • 财政年份:
    1992
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Well-Posed Inverse Problems
数学科学:适定反问题
  • 批准号:
    8902246
  • 财政年份:
    1989
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
  • 批准号:
    8703500
  • 财政年份:
    1987
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations of Mathematical Physics
数学科学:数学物理偏微分方程
  • 批准号:
    8502326
  • 财政年份:
    1985
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Continuing Grant

相似海外基金

Asymptotics in non-linear cointegrating regression: theory and applications
非线性协整回归中的渐近:理论与应用
  • 批准号:
    DP130102408
  • 财政年份:
    2013
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Projects
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
  • 批准号:
    1212167
  • 财政年份:
    2012
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
  • 批准号:
    261412-2006
  • 财政年份:
    2011
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Grants Program - Individual
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
  • 批准号:
    261412-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Grants Program - Individual
Non-autonomous set-valued dynamical processes: Asymptotics and applications
非自治集值动态过程:渐近学和应用
  • 批准号:
    169166715
  • 财政年份:
    2010
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Research Grants
Research of non-commutative geometry, singular point, and geometric asymptotics
非交换几何、奇点、几何渐进研究
  • 批准号:
    22540095
  • 财政年份:
    2010
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
  • 批准号:
    261412-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Linear and Non-linear Wave Equations: Regularity, Asymptotics, and Blowup
线性和非线性波动方程的分析:正则性、渐近性和爆炸
  • 批准号:
    0701087
  • 财政年份:
    2007
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Standard Grant
New asymptotics in non-linear quantum mechanics and shortwave diffraction
非线性量子力学和短波衍射中的新渐近论
  • 批准号:
    261412-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Grants Program - Individual
New Directions in Non-linear Mathematical Asymptotics
非线性数学渐进的新方向
  • 批准号:
    DP0664624
  • 财政年份:
    2006
  • 资助金额:
    $ 9.05万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了