Scattering Theory

散射理论

基本信息

  • 批准号:
    9970614
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9970614The main interest of the PI is the study of resonances and of the wave equation. Resonances which are described by complex numbers constitute a replacement of eigenvalues for problems on noncompact domains and they appear naturally in many branches of mathematics and physics. The real part of a resonance describes the energy (or frequency) of a state and the imaginary part its rate of decay. This constitutes a more realistic model than an eigenvalue which provides energy only and assumes eternal existence of a state. A new wealth of phenomena appears and our understanding is still rather fragmentary. Linear and non-linear wave equations describe many physical phenomena often closely related to resonances. In the contexts of propagation, spectral and scattering theories the PI will investigate them further. The specific directions include: understanding of the dynamical definition of resonances and their appearance in the long time behaviour of solutions of the wave and Schroedinger equations, obtaining lower bounds on the number of resonances in terms of dynamical quantities, developing the theory of the FBI transformation on non-compact manifolds with applications to resonances and to the study of propagation for Schroedinger equation in mind, estimates of resonances at low energies, understanding of "quantum chaos" in scattering theory.For a broad range of phenomena, a physical state can be described by twoparameters: its rest energy and its rate of decay. This information is elegantly encoded in a complex number, whose real part is the energy and the imaginary part, the rate of decay. This description of a state, called a resonance, appears naturally in mathematics, physics and chemistry: from the Riemann zeta function to experimental scattering data.The PI studies general principles in the distribution of resonances,their relation to wave propagation, and their behaviour in various specificsituations. He is also interested in "quantum chaos", the study of which raises questions in many areas: from number theory to mezoscopic systems of physics. The main issues are universal relations between the classical and quantum views of the world -- one of the yet unresolved central themes of the 20th century.
PI的主要兴趣是共振和波动方程的研究。用复数描述的共振构成了非紧域问题的特征值的一种替代,它们在数学和物理的许多分支中自然出现。共振的实部描述状态的能量(或频率),虚部描述状态的衰减速率。这构成了一个比只提供能量并假设状态永恒存在的特征值更现实的模型。新的丰富的现象出现了,而我们的认识还相当零碎。线性和非线性波动方程描述了许多与共振密切相关的物理现象。在传播,光谱和散射理论的背景下,PI将进一步研究它们。具体方向包括:理解共振的动力学定义及其在波和薛定谔方程解的长时间行为中的表现,从动力学量的角度获得共振数的下界,发展非紧流形上的FBI变换理论,并将其应用于共振和薛定谔方程的传播研究,低能共振的估计,对散射理论中“量子混沌”的理解。对于广泛的现象,物理状态可以用两个参数来描述:它的静止能量和衰变速率。这个信息被优雅地编码成一个复数,它的实部是能量,虚部是衰减速率。这种状态的描述,称为共振,自然出现在数学、物理和化学中:从黎曼ζ函数到实验散射数据。PI研究共振分布的一般原理,它们与波传播的关系,以及它们在各种特定情况下的行为。他对“量子混沌”也很感兴趣,对它的研究在许多领域提出了问题:从数论到物理学的宏观系统。主要问题是经典世界观和量子世界观之间的普遍关系——这是20世纪尚未解决的中心主题之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej Zworski其他文献

Numerical Linear Algebra and Solvability of Partial Differential Equations
Existence of resonances in three dimensions
A quantitative version of Catlin-D’Angelo–Quillen theorem
  • DOI:
    10.1007/s13324-012-0035-4
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alexis Drouot;Maciej Zworski
  • 通讯作者:
    Maciej Zworski
Spacing Between Phase Shifts in a Simple¶Scattering Problem
Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maciej Zworski
  • 通讯作者:
    Maciej Zworski

Maciej Zworski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej Zworski', 18)}}的其他基金

Spectral Theory and Microlocal Analysis
谱理论和微局域分析
  • 批准号:
    1952939
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
  • 批准号:
    1901929
  • 财政年份:
    2019
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1500852
  • 财政年份:
    2015
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
"Weyl Law at 100"
《韦尔定律100岁》
  • 批准号:
    1216660
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Semiclassical Analysis
半经典分析
  • 批准号:
    1201417
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
  • 批准号:
    0965738
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Scattering Theory
散射理论
  • 批准号:
    0654436
  • 财政年份:
    2007
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Semi-Classical Analysis
半经典分析
  • 批准号:
    0200732
  • 财政年份:
    2002
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Many-Body Scattering
多体散射
  • 批准号:
    9970607
  • 财政年份:
    1999
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
  • 批准号:
    9505530
  • 财政年份:
    1995
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Fellowship Award
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Electromagnetic Scattering from a Large Cavity in Heterogeneous Media: Theory and Algorithm
异质介质中大空腔的电磁散射:理论和算法
  • 批准号:
    567866-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postdoctoral Fellowships
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    2204322
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Radio Wave Scattering from Rough Surfaces -- Theory and Application to Maritime Remote Sensing with HF and other Radar Technologies
粗糙表面的无线电波散射——高频和其他雷达技术海上遥感的理论与应用
  • 批准号:
    RGPIN-2020-05003
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了