Semiclassical Analysis
半经典分析
基本信息
- 批准号:1500852
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies mathematical problems motivated by quantum mechanics, wave propagation, and chaotic dynamics, in particular, oscillations and decay of waves. Just as a bell sounds a fading note, a wave or an unstable molecule oscillates and decays at certain rates. These two rates (of oscillation and of decay) are properties of the system and not of the way in which it is measured. Understanding their behaviour can be useful both in construction and in detection. For instance, in engineering, the ratio of the two rates is called the quality factor and tells us the amount of energy loss per cycle. Knowing this ratio for modes of specific systems is important in design of, for instance, microelectromechanical systems (MEMS). On a different scale, similar modes appear in gravitational waves generated by colliding black holes and their (hypothetical) detection could provide information about black holes. The PI searches for unifying themes connecting the distribution of these modes and geometries of various systems.Many physical systems can be described using evolution of states. The following correlations are observed: one measures the time evolution of one state against another state. The time representation can be replaced by the frequency representation (by taking a Fourier transform) which produces the power spectrum. The poles of power spectrum appear in different settings and are called scattering poles (obstacle scattering), quantum resonances (quantum scattering theory), quasinormal modes (general relativity), Pollicott--Ruelle resonances (chaos theory). These poles provide information about long time behaviour: the real part corresponds to the rate of oscillations, and the imaginary part to the rate of decay. The PI studies these poles in the different settings mentioned above. One recurrent theme is the use of the classical/quantum (wave) correspondence which suggests subtle interplay between "classical" properties of the system and properties of waves. The PI investigates this phenomenon in many settings, in particular when chaotic behaviour is present on the classical level. Most recently methods that were developed for the study of classical quantum correspondence (microlocal analysis) became useful in the study of purely dynamical problems such as meromorphic continuations of zeta functions and problems in X-ray tomography.
PI研究由量子力学、波传播和混沌动力学引发的数学问题,特别是波的振荡和衰减。就像钟声发出褪色的音符一样,波或不稳定的分子以一定的速度振荡和衰变。这两个速率(振荡和衰减率)是系统的特性,而不是测量方法的特性。了解它们的行为在建筑和检测中都是有用的。例如,在工程中,这两个速率的比率称为品质因数,它告诉我们每个循环的能量损失量。了解特定系统的模式的这一比率在例如微电子机械系统(MEMS)的设计中很重要。在不同的尺度上,类似的模式出现在黑洞碰撞产生的引力波中,它们的(假设)探测可以提供关于黑洞的信息。PI寻找将这些模式的分布和不同系统的几何结构联系起来的统一主题。许多物理系统可以用状态演化来描述。观察到以下相关性:一种是测量一种状态相对于另一种状态的时间演化。时间表示可以用产生功率谱的频率表示(通过进行傅立叶变换)来代替。功率谱的极点出现在不同的环境中,分别称为散射极点(障碍散射)、量子共振(量子散射理论)、准正则模(广义相对论)、Pollicott-Ruelle共振(混沌理论)。这些极点提供了有关长时间行为的信息:实数部分对应于振荡速率,虚数部分对应于衰减率。PI在上面提到的不同设置中研究这些极点。一个反复出现的主题是经典/量子(波)对应的使用,它表明系统的“经典”属性和波的属性之间存在微妙的相互作用。PI在许多情况下研究这一现象,特别是当经典水平上存在混沌行为时。最近,用于研究经典量子对应的方法(微域分析)在纯动力学问题的研究中变得有用,例如Zeta函数的亚纯延拓和X射线层析成像中的问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Outgoing Solutions Via Gevrey-2 Properties
通过 Gevrey-2 Properties 输出解决方案
- DOI:10.1007/s40818-021-00094-2
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Galkowski, Jeffrey;Zworski, Maciej
- 通讯作者:Zworski, Maciej
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maciej Zworski其他文献
Numerical Linear Algebra and Solvability of Partial Differential Equations
- DOI:
10.1007/s00220-002-0683-6 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Maciej Zworski - 通讯作者:
Maciej Zworski
Existence of resonances in three dimensions
- DOI:
10.1007/bf02101240 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Antônio Sá Barreto;Maciej Zworski - 通讯作者:
Maciej Zworski
A quantitative version of Catlin-D’Angelo–Quillen theorem
- DOI:
10.1007/s13324-012-0035-4 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:1.600
- 作者:
Alexis Drouot;Maciej Zworski - 通讯作者:
Maciej Zworski
Spacing Between Phase Shifts in a Simple¶Scattering Problem
- DOI:
10.1007/s002200050663 - 发表时间:
1999-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Steve Zelditch;Maciej Zworski - 通讯作者:
Maciej Zworski
Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maciej Zworski - 通讯作者:
Maciej Zworski
Maciej Zworski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maciej Zworski', 18)}}的其他基金
Spectral Theory and Microlocal Analysis
谱理论和微局域分析
- 批准号:
1952939 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
- 批准号:
1901929 - 财政年份:2019
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
- 批准号:
0965738 - 财政年份:2010
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
- 批准号:
9505530 - 财政年份:1995
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Semiclassical analysis of Schroedinger equations
薛定谔方程的半经典分析
- 批准号:
21K03303 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical analysis of spectral and scattering problems arising from energy-level crossings
能级交叉引起的光谱和散射问题的半经典分析
- 批准号:
21K03282 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical analysis of sprectral and scattering problems on energy-level crossings
能级交叉的光谱和散射问题的半经典分析
- 批准号:
18K03349 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parallel Semiclassical Methods for Seismic Wave Propagation, Inversion, and Data Analysis
地震波传播、反演和数据分析的并行半经典方法
- 批准号:
1818592 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Semiclassical Analysis of Schroedinger equations
薛定谔方程的半经典分析
- 批准号:
18K03384 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical analysis and Open Quantum Systems
半经典分析和开放量子系统
- 批准号:
1942683 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Studentship
At the interface between semiclassical analysis and numerical analysis of wave propagation problems
波传播问题的半经典分析和数值分析之间的接口
- 批准号:
EP/R005591/1 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Fellowship
Semiclassical analysis of spectral and scattering problems associated with energy crossings
与能量交叉相关的光谱和散射问题的半经典分析
- 批准号:
15K17563 - 财政年份:2015
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Semiclassical Analysis, Amplification, and Subconvexity
半经典分析、放大和次凸
- 批准号:
1501230 - 财政年份:2015
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant














{{item.name}}会员




