Symplectic and Poisson Geometry in interaction with Algebra, Analysis and Topology
辛几何和泊松几何与代数、分析和拓扑的相互作用
基本信息
- 批准号:0965738
- 负责人:
- 金额:$ 3.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide funding to organize a conference,``Symplectic and Poisson geometry in interaction with Algebra, Analysis and Topology'', celebrating four decades since the emergence of symplectic and Poisson geometry and their influence on major areas of mathematics. The conference focuses on recent important developments in symplectic and Poisson geometry, and the interactions of these fields with Analysis, Algebra, differential equations and low-dimensional topology. Specific topics covered by the talks will include: Taubes' recent proof of the Weinstein conjecture using Seiberg-Witten theory, recent progress in Lagrangian intersection theory, classical and quantum Yang-Baxter equations, Poisson and quantum groupoids, dynamical Weyl groups, q-deformed Casimir connections and Kazdhan-Lusztig functors. The conference will provide a forum to outline the recently found connections by Nicolai Reshetikhin, San Vu-Ngoc and others between integrable systems in symplectic and algebraic geometry and representation theory. Reshetikhin and Vu-Ngoc talks will also discuss the recent progress in the quantization of integrable systems from a more algebraic and a more geometric view point, respectively. Other topics covered in the conference will regard recent breakthroughs in relating geodesic flow to eigenfunctions, and Hitrik and Sjostrand's recent work on spectra of non-self adjoint operators in dimension two (which relies heavily on Alan Weinstein's famous work on spectra of Zoll surfaces). The talks by Tudor Ratiu and Jerrold Marsden will focus on applications of symplectic geometry to a wide problems in physics and engineering such as as fluid and plasma theory, liquid crystals and micropolar fluids.The goal behind this conference is that of holding a high profile meeting to bring together world experts and junior researchers to discuss these current exciting interactions. The time of the conference (May 2010) coincides with the first year anniversary of Alan Weinstein?s retirement from UC Berkeley. Weinstein has been one of the most influential figures in symplectic geometry and analysis in the past forty years. His fundamental work has inspired many mathematicians and led to the development of central concepts in symplectic and Poisson geometry, as well as to the establishment of symplectic geometry as an independent discipline within mathematics. The conference will provide a forum to dicuss Weinstein's impact on geometry and mathematics at large. The last few decades have witnessed numerous spectacular interactions between symplectic geometry, analysis, low dimensional topology and partial differential equations leading to new understanding in fundamental problems of mathematics. Today symplectic geometry is an active, central branch of mathematics populated by deep results and connections with physics, low-dimensional topology, gauge theory, integrable systems, representation theory, group theory, semiclassical analysis and Lie groups. The main theme of the Conference is to illuminate the particular type of interactions which characterize the past forty years of developments in symplectic geometry. To this end the conference will have talks by leading experts, both junior and senior, describing the current state of the art of several of the most fundamental research problems in these areas. Symplectic and Poisson geometry are by now well established fields of research, and its language and techniques are being used in many areas of mathematics, theoretical physics, and engineering such as symmetric bifurcation problems, integrable systems, string theory, geometric phases, nonlinear control, nonholonomic mechanics and locomotion generation in robotics.
该奖项将提供资金组织一个名为“辛和泊松几何与代数、分析和拓扑的相互作用”的会议,庆祝辛和泊松几何出现40周年及其对数学主要领域的影响。会议的重点是辛几何和泊松几何的最新重要发展,以及这些领域与分析、代数、微分方程和低维拓扑的相互作用。讲座的具体主题包括:Taubes最近用Seiberg-Witten理论证明了Weinstein猜想,拉格朗日交点理论的最新进展,经典和量子Yang-Baxter方程,泊松和量子群,动态Weyl群,q-变形卡西米尔连接和Kazdhan-Lusztig函子。会议将提供一个论坛,概述Nicolai Reshetikhin, San Vu-Ngoc等人最近发现的可积系统在辛几何和代数几何以及表征理论之间的联系。Reshetikhin和Vu-Ngoc的演讲还将分别从更代数和更几何的角度讨论可积系统量化的最新进展。会议中涉及的其他主题将包括最近在将测地线流与特征函数联系起来方面的突破,以及Hitrik和Sjostrand最近在二维非自伴随算子谱方面的工作(这在很大程度上依赖于Alan Weinstein关于Zoll曲面谱的著名工作)。Tudor Ratiu和Jerrold Marsden的讲座将重点关注辛几何在物理和工程领域的广泛应用,如流体和等离子体理论、液晶和微极流体。这次会议的目的是举办一次高知名度的会议,汇集世界专家和初级研究人员,讨论这些当前令人兴奋的相互作用。会议召开的时间(2010年5月)正好是艾伦·韦恩斯坦(Alan Weinstein)的一周年纪念。他从加州大学伯克利分校退休。温斯坦是近四十年来辛几何和辛分析领域最具影响力的人物之一。他的基本工作启发了许多数学家,并导致了辛几何和泊松几何中心概念的发展,以及辛几何作为数学中一个独立学科的建立。会议将提供一个论坛来讨论温斯坦对几何和数学的影响。过去几十年见证了辛几何、分析、低维拓扑和偏微分方程之间无数壮观的相互作用,导致对数学基本问题的新理解。今天辛几何是数学的一个活跃的中心分支,它与物理学、低维拓扑、规范论、可积系统、表示论、群论、半经典分析和李群有着深刻的结果和联系。会议的主题是阐明过去四十年来辛几何发展中所特有的特殊类型的相互作用。为此,会议将由高级和初级的主要专家进行会谈,描述这些领域中几个最基本的研究问题的当前状态。辛几何和泊松几何是一个成熟的研究领域,其语言和技术被应用于数学、理论物理和工程的许多领域,如对称分岔问题、可积系统、弦理论、几何相、非线性控制、非完整力学和机器人运动生成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maciej Zworski其他文献
Numerical Linear Algebra and Solvability of Partial Differential Equations
- DOI:
10.1007/s00220-002-0683-6 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Maciej Zworski - 通讯作者:
Maciej Zworski
Existence of resonances in three dimensions
- DOI:
10.1007/bf02101240 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Antônio Sá Barreto;Maciej Zworski - 通讯作者:
Maciej Zworski
A quantitative version of Catlin-D’Angelo–Quillen theorem
- DOI:
10.1007/s13324-012-0035-4 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:1.600
- 作者:
Alexis Drouot;Maciej Zworski - 通讯作者:
Maciej Zworski
Spacing Between Phase Shifts in a Simple¶Scattering Problem
- DOI:
10.1007/s002200050663 - 发表时间:
1999-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Steve Zelditch;Maciej Zworski - 通讯作者:
Maciej Zworski
Fractal Weyl Laws in Discrete Models of Chaotic Scattering Stéphane Nonnenmacher and Maciej Zworski
混沌散射离散模型中的分形 Weyl 定律 Stéphane Nonnenmacher 和 Maciej Zworski
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maciej Zworski - 通讯作者:
Maciej Zworski
Maciej Zworski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maciej Zworski', 18)}}的其他基金
Spectral Theory and Microlocal Analysis
谱理论和微局域分析
- 批准号:
1952939 - 财政年份:2020
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Conference: Microlocal Analysis and Spectral Theory
会议:微局域分析与谱理论
- 批准号:
1901929 - 财政年份:2019
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Linear and Non-Linear Scattering
数学科学:线性和非线性散射
- 批准号:
9505530 - 财政年份:1995
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
相似国自然基金
具有大旋转角速度的自重力Euler-Poisson方程的适定性研究
- 批准号:2025JJ60068
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
量子Navier-Stokes-Poisson方程的数学理论研究
- 批准号:QN25A010017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 Poisson-Nernst-Planck 模型的离子尺寸影响效应研究
- 批准号:2024JJ6458
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
- 批准号:12301284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Wiener-Poisson空间上的微分分析及其应用
- 批准号:12371152
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
两类Schrödinger-Poisson系统解的研究
- 批准号:12301144
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Poisson-Nernst-Planck模型的奇异摄动方法和应用
- 批准号:12301220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
半导体Euler-Poisson方程弱解的适定性及相关极限
- 批准号:12371223
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
Vlasov-Poisson-Fokker-Planck/Navier-Stokes方程组的流体动力学极限及边界层分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
外区域上可压缩Navier-Stokes-Poisson方程和磁流体力学方程的解的定性分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: A Meeting on Poisson Geometry
会议:泊松几何会议
- 批准号:
2410632 - 财政年份:2024
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 3.8万 - 项目类别:
Studentship
Computer algebra for Poisson geometry
泊松几何的计算机代数
- 批准号:
552270-2020 - 财政年份:2020
- 资助金额:
$ 3.8万 - 项目类别:
University Undergraduate Student Research Awards
A Series of Meetings in Poisson Geometry
泊松几何系列会议
- 批准号:
2002843 - 财政年份:2020
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Poisson Geometry, Quantum Moduli, and Geometric Dualities
泊松几何、量子模和几何对偶
- 批准号:
1901876 - 财政年份:2019
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
Interactions between representation theory, Poisson algebras and differential algebraic geometry
表示论、泊松代数和微分代数几何之间的相互作用
- 批准号:
EP/N034449/1 - 财政年份:2016
- 资助金额:
$ 3.8万 - 项目类别:
Research Grant














{{item.name}}会员




