Computational Problems over Finite Fields

有限域上的计算问题

基本信息

  • 批准号:
    9970637
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

This research project is devoted to two major problems in computations over finite fields, namely the problems of (a) factoring polynomials and (b) solving large systems of linear equations. The investigator plans to design new efficient algorithms for factoring both univariate and multivariate polynomials, using tools from combinatorics, geometry, and number theory. Large systems of linear equations over finite fields arise in factoring polynomials of high degrees as well as in several other important problems including computing discrete logarithms in finite fields, factoring integers and solving algebraic or differential equations. These systems could be sparse (given explicitly) or dense (given implicitly). The main focus is on efficient block algorithms for solving such large systems. The research of the project is in the area of computational mathematics and has applications in digital communications. A finite field is a finite collection of objects where one can perform addition, multiplication and division in a similar fashion as for real numbers. The difference is that finite field operations involve no round-off errors at all. It is exactly this important property that makes finite fields useful for encoding (and hiding) digital information. In fact, almost all the known encoding methods for error correction and data security are based on algebraic structures over finite fields. For instance, the US Digital Signature Standard (1998) is based on finite field operations, while error correction codes based on finite fields can be found today in almost every household (CD players) and on the outskirts of the solar system (Voyager probe). This project focuses on efficient computations in finite fields and has important applications to coding theory, cryptography, and computer science.
本课题主要研究有限域计算中的两个主要问题,即(a)多项式因式分解问题和(b)求解大型线性方程组问题。研究者计划设计新的有效的算法来分解单变量和多变量多项式,使用组合学,几何和数论的工具。有限域上的大型线性方程组出现在高阶多项式分解以及其他一些重要问题中,包括计算有限域的离散对数,分解整数和求解代数或微分方程。这些系统可以是稀疏的(显式给出)或密集的(隐式给出)。主要的焦点是有效的块算法来解决这样的大系统。本课题的研究属于计算数学领域,在数字通信领域有应用。有限域是对象的有限集合,其中可以用与实数类似的方式执行加法、乘法和除法。不同之处在于有限域操作完全不涉及舍入误差。正是这个重要的特性使得有限域在编码(和隐藏)数字信息时非常有用。实际上,几乎所有已知的用于纠错和数据安全的编码方法都是基于有限域上的代数结构。例如,美国数字签名标准(1998)是基于有限场操作的,而基于有限场的纠错码今天可以在几乎每个家庭(CD播放器)和太阳系外围(旅行者探测器)中找到。本项目专注于有限域的高效计算,在编码理论、密码学和计算机科学中有着重要的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuhong Gao其他文献

Enhancing decolorization and degradation of azo dyes in a combined process of iron-carbon microelectrolysis and aerobic bio-contact oxidation.
在铁碳微电解和好氧生物接触氧化的组合过程中增强偶氮染料的脱色和降解。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Liang;Qian Yao;Haoyi Cheng;Shuhong Gao;Fanying Kong;Dan Cui;Yuqi Guo;Nanqi Ren;Aijie Wang
  • 通讯作者:
    Aijie Wang
Influence of dextrins on the production of spiramycin and impurity components by Streptomyces ambofaciens
糊精对安博链霉菌生产螺旋霉素及杂质成分的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaiya Yao;Shuhong Gao;Yanjie Wu;Zhen Zhao;Wen Wang;Quangui Mao
  • 通讯作者:
    Quangui Mao
The Complexity of an Adaptive Subdivision Method for Approximating Real Curves
近似真实曲线的自适应细分方法的复杂性
Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems
全球人类废水处理系统中抗生素抗性基因的多样性和分布
  • DOI:
    10.1038/s41467-025-59019-3
  • 发表时间:
    2025-04-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Congmin Zhu;Linwei Wu;Daliang Ning;Renmao Tian;Shuhong Gao;Bing Zhang;Jianshu Zhao;Ya Zhang;Naijia Xiao;Yajiao Wang;Mathew R. Brown;Qichao Tu;Feng Ju;George F. Wells;Jianhua Guo;Zhili He;Per H. Nielsen;Aijie Wang;Yu Zhang;Ting Chen;Qiang He;Craig S. Criddle;Michael Wagner;James M. Tiedje;Thomas P. Curtis;Xianghua Wen;Yunfeng Yang;Lisa Alvarez-Cohen;David A. Stahl;Pedro J. J. Alvarez;Bruce E. Rittmann;Jizhong Zhou
  • 通讯作者:
    Jizhong Zhou
How the communication style of chatbots influences consumers’ satisfaction, trust, and engagement in the context of service failure
在服务失败的背景下,聊天机器人的沟通风格如何影响消费者的满意度、信任度和参与度

Shuhong Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuhong Gao', 18)}}的其他基金

AF: Medium: Collaborative Research: Sparse Polynomials, Complexity, and Algorithms
AF:媒介:协作研究:稀疏多项式、复杂性和算法
  • 批准号:
    1407623
  • 财政年份:
    2014
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Topics on Computational Algebra
计算代数专题
  • 批准号:
    1005369
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Complexity and Algorithms of Decoding Algebraic Codes
代数码解码的复杂性和算法
  • 批准号:
    0830581
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Algorithms for polynomial systems
多项式系统的算法
  • 批准号:
    0302549
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
East Coast Computer Algebra Day 2003
2003 年东海岸计算机代数日
  • 批准号:
    0305420
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似海外基金

Competition over Information Transmission in Political Agency Problems
政治代理问题中信息传输的竞争
  • 批准号:
    22K13368
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Rule over Foreign Peoples and Realms. Forms, Objectives and Problems of Conquest Politics in the Middle Ages
对外国人民和领域的统治。
  • 批准号:
    464499198
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Publication Grants
Algebraic Decision Problems over the Activity Hierarchy of Automaton Structures
自动机结构活动层次的代数决策问题
  • 批准号:
    492814705
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    WBP Fellowship
Counting Problems in Number Theory: Elliptic and Plane Quartic Curves over Finite Fields
数论中的计数问题:有限域上的椭圆和平面四次曲线
  • 批准号:
    1802281
  • 财政年份:
    2018
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RI: Small: Effective Preference Reasoning over Combinatorial Domains: Principles, Problems, Algorithms, and Implementations
RI:小:组合域的有效偏好推理:原理、问题、算法和实现
  • 批准号:
    1618783
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
New Algorithmic Complexity Bounds for Isomorphism Problems over Graphs and other Algebraic Structures
图和其他代数结构上同构问题的新算法复杂度界限
  • 批准号:
    225911997
  • 财政年份:
    2013
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grants
Problems of Definability and Decidability over Algebraic Fields
代数域的可定义性和可判定性问题
  • 批准号:
    1161456
  • 财政年份:
    2012
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Problems Over Local Fields and Function Fields
局部域和函数域的问题
  • 批准号:
    1100784
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Problems on geometric asymptotic analysis over convex polytopes
凸多胞形几何渐近分析问题
  • 批准号:
    21740117
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The problems and judicial review over the administrative obligation of investigation and to provide information
行政查处和提供信息义务存在的问题及司法审查
  • 批准号:
    21530040
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了