RI: Small: Effective Preference Reasoning over Combinatorial Domains: Principles, Problems, Algorithms, and Implementations
RI:小:组合域的有效偏好推理:原理、问题、算法和实现
基本信息
- 批准号:1618783
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Preferences are fundamental attributes of human reasoning and decision making. They appear whenever a choice between alternatives is to be made. Understanding and automating preference reasoning is a major problem of artificial intelligence, especially important for the design of autonomous intelligent decision support systems. If there are few alternatives, preferences between them can be represented explicitly and preference reasoning is typically easy. However, in practice the number of alternatives facing the decision maker can be daunting in many cases. In such cases, modeling and representing preferences of the decision maker, and automating preference reasoning based on the model are challenging. To respond to the challenge, the project will study principles and properties of preference aggregation and optimization over large domains of alternatives, and algorithms to support preference reasoning tasks; will develop methods for preference learning and approximation in support of building preference models; and will implement software for effective preference modeling and reasoning. Areas such as knowledge representation, computational social choice, and constraint solving embodied by answer-set programming and satisfiability testing will inform these studies. The project will result in a theoretical and algorithmic framework for preference reasoning over combinatorial domains, in software tools for effective preference reasoning, and in methods to integrate them into artificial intelligence decision support systems that are becoming pervasive in industrial, scientific and governmental applications. The project will assume that the space of alternatives is modeled by a combinatorial domain, where alternatives are represented in terms of values of attributes relevant to decision making. While combinatorial domains are exponentially large in the number of attributes, the sets of values of individual attributes are typically small. This opens a possibility of expressing preferences over elements in a combinatorial domain in terms of preferences on attribute values and relations between the attributes. This is the setting for the project, with preference trees, CP-nets and answer set optimization programs as formal representations of preferences over combinatorial domains. The project will focus on preference aggregation and preference optimization. Finding optimal and near-optimal alternatives, finding collections of optimal or near-optimal alternatives that are in some sense diverse (or similar), and aggregating preferences that are only partially known are some examples of specific problems we will consider. As building manually preference models over large domains is infeasible, the project will study methods to learn preference models (for instance, preference trees), and develop methods for model approximation (different models have varying computational properties, and close approximations of ``hard'' models with ``easy'' ones may prove effective for reasoning with the former). Finally, the project will develop a software suite for several key preference reasoning tasks. The implementation will exploit advances in answer-set programming and satisfiability. The resulting software will be systematically evaluated on benchmarks coming from or motivated by practical applications.
偏好是人类推理和决策的基本属性。每当要在两种选择之间作出选择时,它们就会出现。偏好推理的理解和自动化是人工智能领域的一个重要问题,对于自主式智能决策支持系统的设计尤为重要。如果有几个选择,他们之间的偏好可以显式表示和偏好推理通常是容易的。然而,在实践中,决策者面临的选择数量在许多情况下可能令人生畏。 在这种情况下,建模和表示决策者的偏好,并自动化的偏好推理模型的基础上是具有挑战性的。为了应对这一挑战,该项目将研究偏好聚合和优化的原理和特性,以及支持偏好推理任务的算法;将开发偏好学习和近似方法,以支持建立偏好模型;并将实现有效的偏好建模和推理软件。知识表示,计算的社会选择,约束解决体现的答案集编程和可满足性测试等领域将通知这些研究。该项目将产生一个理论和算法框架的偏好推理的组合域,在软件工具,有效的偏好推理,并在方法,将它们集成到人工智能决策支持系统,在工业,科学和政府应用中变得越来越普遍。该项目将假设空间的替代品是由一个组合域,其中的替代品表示的相关决策的属性值。虽然组合域的属性数量呈指数级增长,但单个属性的值集通常很小。这打开了一种可能性,表达偏好的属性值和属性之间的关系方面的组合域中的元素。这是该项目的设置,偏好树,CP网和答案集优化程序作为组合域偏好的正式表示。该项目将侧重于偏好汇总和偏好优化。寻找最优和接近最优的替代方案,寻找在某种意义上不同(或相似)的最优或接近最优的替代方案的集合,以及聚合仅部分已知的偏好,这些都是我们将要考虑的具体问题的一些例子。由于在大的领域中手工建立偏好模型是不可行的,该项目将研究学习偏好模型(例如,偏好树)的方法,并开发模型近似的方法(不同的模型具有不同的计算特性,"硬“模型与”易“模型的近似可能证明对前者的推理是有效的)。 最后,该项目将为几个关键的偏好推理任务开发一个软件套件。该实现将利用答案集编程和可满足性的进步。由此产生的软件将根据来自实际应用或由实际应用激发的基准进行系统评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miroslaw Truszczynski其他文献
Voting-based ensemble learning for partial lexicographic preference forests over combinatorial domains
- DOI:
10.1007/s10472-019-09645-7 - 发表时间:
2019-07-06 - 期刊:
- 影响因子:1.000
- 作者:
Xudong Liu;Miroslaw Truszczynski - 通讯作者:
Miroslaw Truszczynski
Linear upper bounds for local Ramsey numbers
- DOI:
10.1007/bf01788530 - 发表时间:
1987-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Miroslaw Truszczynski;Zsolt Tuza - 通讯作者:
Zsolt Tuza
Miroslaw Truszczynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miroslaw Truszczynski', 18)}}的其他基金
RI: Small: Qualitative Preferences: Merging Paradigms, Extending the Language, Reasoning about Incomplete Outcomes
RI:小:定性偏好:合并范式、扩展语言、推理不完整的结果
- 批准号:
0913459 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Nonmonotonic Reasoning and Computational Knowledge Representation
非单调推理和计算知识表示
- 批准号:
0097278 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CISE Research Infrastructure: A Laboratory for Research in High Performance Distributed Computing
CISE 研究基础设施:高性能分布式计算研究实验室
- 批准号:
9502645 - 财政年份:1995
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Revision programs: A Tool for Programming Knowledge Base Transformations
修订程序:知识库转换编程工具
- 批准号:
9400568 - 财政年份:1994
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CISE Research Instrumentation: A High-Performance ATM Research Network
CISE 研究仪器:高性能 ATM 研究网络
- 批准号:
9320179 - 财政年份:1994
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Nonmonotonic Logic of Commonsense Reasoning and Their Algorithmic Aspects
常识推理的非单调逻辑及其算法方面
- 批准号:
9012902 - 财政年份:1991
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
- 批准号:
MR/Y503344/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Designing safe, potent, and cost-effective small peptide erythropoietin analogs
设计安全、有效且经济有效的小肽促红细胞生成素类似物
- 批准号:
10602271 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Effective Design and Recommendation for Privacy-Preserving Data Visualizations
SaTC:核心:小型:隐私保护数据可视化的有效设计和建议
- 批准号:
2224066 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Cost-Effective Cyber Security for Small Businesses
为小型企业提供经济高效的网络安全
- 批准号:
10032395 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Feasibility Studies
CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
- 批准号:
2211459 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CNS Core: Small: Principled Methodologies and Systems Support for Automated Cost-Effective Service Blending in the Emerging Public Cloud
CNS 核心:小型:为新兴公共云中自动化、经济高效的服务混合提供原则性方法和系统支持
- 批准号:
2122155 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: SMALL: Effective and Equitable Technical Interviews in Software Engineering
SHF:小型:软件工程中有效且公平的技术面试
- 批准号:
2006977 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CNS Core: Small: Test Framework for Easy and Effective Use of Network Verification
CNS Core:小型:轻松有效地使用网络验证的测试框架
- 批准号:
2007073 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Development of slope disaster prevention technique by the small-diameter spiral pile for effective use of slopes
有效利用边坡的小直径螺旋桩边坡防灾技术开发
- 批准号:
20K04678 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)