Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
基本信息
- 批准号:RGPIN-2018-04534
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analytic Function Spaces; Approximation Theory; Banach Algebras; Hardy, Dirichlet, Bergman, Model, de Brange-Rovnyak Spaces; Interpolation and Sampling; Matrix Theory; Operator Theory; Shift, Toeplitz, hankel Operators; Spectrum, Spectral Analysis; Stochastic and Doubly Stochastic Matrices
解析函数空间;近似理论; Banach代数;哈代,狄利克雷,伯格曼,模型,德Brange-Rovnyak空间;插值和采样;矩阵理论;算子理论;移位,Toeplitz,汉克尔算子;谱,谱分析;随机和双随机矩阵
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mashreghi, Javad其他文献
Mashreghi, Javad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mashreghi, Javad', 18)}}的其他基金
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A Mathematical approach for characterizing the dispersion of La1.8 Sr0.2 NiO4 filler in Epoxy-based dielectric composite
表征环氧介电复合材料中 La1.8 Sr0.2 NiO4 填料分散度的数学方法
- 批准号:
501209-2016 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spaces of analytic functions and their operators
解析函数空间及其算子
- 批准号:
251135-2012 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
多kernel环境下通用图形处理器缓存子系统性能优化研究
- 批准号:62162002
- 批准年份:2021
- 资助金额:36 万元
- 项目类别:地区科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
- 批准号:31871625
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Kernel算子的仿射非线性系统故障诊断与容错控制研究及应用
- 批准号:61473004
- 批准年份:2014
- 资助金额:83.0 万元
- 项目类别:面上项目
非向量型Kernel学习机及其对动态形状模板的应用
- 批准号:60373090
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Analysis on reproducing kernel Hilbert spaces
再生核希尔伯特空间分析
- 批准号:
20K14334 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Principles in Reproducing Kernel Hilbert Spaces
再现核希尔伯特空间的不确定性原理
- 批准号:
2000236 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual