Stability of Algebraic Manifold
代数流形的稳定性
基本信息
- 批准号:9971387
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9971387Principal Investigator: David A. Gieseker and Huazhang LuoIn Geometric Invariant Theory, in order to study the moduliproblems, the notion of stability for any polarized projectivevariety is introduced. However to check the stability is usuallya difficult problem. It has been done by Mumford for curves withgenus bigger than 1, by Gieseker for surfaces of general type,and by Viehweg for high dimensional varieties with semi-amplecanonical line bundles. We will study the stability of apolarized smooth projective variety as used by Gieseker andMumford from a differential geometric viewpoint. Morespecifically, we try to relate the Gieseker-Mumford stability tothe existence of a special Kahler metric on the variety such thatits scalar curvature is constant and its Ricci curvaturesatisfies some non-degenerate constraints. This metric is notKahler-Einstein, but is closely related to Kahler-Einsteinmetric. One motivation for this project comes from the previouswork done by Donaldson, Uhlenbeck and Yau on the relation betweenstability of vector bundle and the existence of Yang-Millsconnection. Our project is to relate two important but different fields inmathematics together. One is the study of special metrics, whichinvolves the study of differential equations on manifold andusually has connection to physics. Another is the study ofstability in moduli space theory which involves mainlyalgebra. Our approach is to establish a correspondence betweenthese two fields, in particular to describe the meaning ofstability in terms of the existence of special metrics. Theadvantage for doing is it will not only provide us with newinsights about those special metrics, but also provide us withnew technique to moduli space theory. For example, this kind ofcorrespondence will enable us to solve some difficultmathematical questions such as checking the Gieseker-Mumfordstability of some manifolds. This question is one of thefundamental questions in the moduli space theory but has not beensolved in general.
摘要奖:DMS-9971387主要研究者:大卫A. Gieseker和Luo Huazhang在几何不变论中,为了研究模问题,引入了任何极化射影变分的稳定性概念。然而,稳定性的校核往往是一个难题. 它已经完成了芒福德的曲线与亏格大于1,由Gieseker的一般类型的表面,和Viehweg的高维品种半amplecanonical线丛。我们将从微分几何的观点研究Gieseker和Mumford所使用的非极化光滑射影簇的稳定性。更具体地说,我们试图将Gieseker-Mumford稳定性与簇上存在一个特殊的Kahler度量联系起来,使得它的标量曲率是常数,并且它的Ricci曲率满足一些非退化约束。这个度规不是Kahler-Einstein度规,而是与Kahler-Einstein度规密切相关。这个项目的一个动机来自于唐纳森,Uhlenbeck和Yau关于向量丛的稳定性与Yang-Mills联络存在性之间关系的工作。我们的计划是把数学中两个重要但不同的领域联系起来。一个是特殊度量的研究,它涉及到流形上微分方程的研究,通常与物理学有关。 二是模空间理论中稳定性的研究,主要涉及代数。我们的方法是在这两个领域之间建立一种对应关系,特别是用特殊度量的存在来描述稳定性的意义。这样做的好处是不仅为我们提供了关于这些特殊度量的新的视角,而且为我们提供了模空间理论的新的技术。例如,这种对应将使我们能够解决一些困难的数学问题,如检查Gieseker-Mumford稳定性的一些流形。这个问题是模空间理论中的基本问题之一,但至今没有得到普遍的解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gieseker其他文献
David Gieseker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gieseker', 18)}}的其他基金
Interdisciplinary Study of Conformal Field Theory-Mathematics and Physics
共形场论-数学与物理的跨学科研究
- 批准号:
9721423 - 财政年份:1998
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9707747 - 财政年份:1997
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
The Spectral Theory of Difference Operators
差分算子的谱理论
- 批准号:
9622905 - 财政年份:1996
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Stable Bundles on Algebraic Surfaces
数学科学:代数曲面上的稳定丛
- 批准号:
9305657 - 财政年份:1993
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Algebro-Geometric Theory of Difference Equations
数学科学:差分方程的代数几何理论
- 批准号:
9102047 - 财政年份:1991
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Anti Self-dual Connections on Algebraic Surfaces
数学科学:代数曲面上的反自对偶联系
- 批准号:
8904922 - 财政年份:1989
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorial Decompositions of Representations of the Classical Algebras
数学科学:经典代数表示的组合分解
- 批准号:
8603228 - 财政年份:1986
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Mathematical Sciences: The Geometry of Algebraic Curves and its Applications
数学科学:代数曲线的几何及其应用
- 批准号:
8603175 - 财政年份:1986
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformation Theory in Algebraic Geometry
数学科学:代数几何中的变形理论
- 批准号:
8301597 - 财政年份:1983
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Categorification and 3-Manifold Invariants in Algebraic Geometry
代数几何中的分类和 3 流形不变量
- 批准号:
1332847 - 财政年份:2012
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Categorification and 3-Manifold Invariants in Algebraic Geometry
代数几何中的分类和 3 流形不变量
- 批准号:
1101439 - 财政年份:2011
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Manifold research on algebraic coding theory
代数编码理论的流形研究
- 批准号:
20740063 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757253 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757293 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757277 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757245 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757312 - 财政年份:2008
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
The study of vector bundles on an algebraic manifold with the trivial canonical bundle
具有平凡正则丛的代数流形上向量丛的研究
- 批准号:
12640024 - 财政年份:2000
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Algebraic Surfaces and 4-Manifold Topology
数学科学:代数曲面和 4 流形拓扑
- 批准号:
9107368 - 财政年份:1991
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant














{{item.name}}会员




