Interdisciplinary Study of Conformal Field Theory-Mathematics and Physics

共形场论-数学与物理的跨学科研究

基本信息

  • 批准号:
    9721423
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

Mathematics has recently seen extensive interaction with physics, especially with the ideas of quantum field theory (QFT), string theory, conformal field theory and Seiberg-Witten theory. These theories provide our deepest understanding of basic physical laws. Mathematics, especially algebraic and differential geometry, has provided the correct framework for these theories, and mathematical techniques have enabled the physicists to establish many of their results, especially in string theory and conformal field theory. On the other hand, physicists, such as Witten, Candelas and many others, have discovered many truly amazing mathematical relationships using physical ideas. However, few mathematicians are fully conversant with the concepts of physics. It is imperative that we train our students to understand these theories. Professor Gieseker's objective is to learn conformal field theory, which is a very basic theory which is also a building block for string theory. From this, he will develop a course which will be accessible to mathematics graduate students, who are eager to learn these theories. On the research side, Professor Gieseker's recent research has been in the deformation theory of infinite dimensional integrable systems, which is closely connected to conformal field theory. So understanding conformal field theory will enrich his research. In this project, Professor Gieseker will collaborate with Professor Eric D'Hoker of the UCLA Physics Department. This IGMS project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
近年来,数学与物理学有着广泛的相互作用,特别是与量子场论(QFT)、弦理论、共形场论和Seiberg-Witten理论的思想。这些理论使我们对基本物理定律有了最深刻的理解。数学,特别是代数和微分几何,为这些理论提供了正确的框架,数学技术使物理学家能够建立他们的许多结果,特别是在弦理论和共形场论中。另一方面,物理学家,如威滕、坎德拉斯和其他许多人,利用物理思想发现了许多真正惊人的数学关系。然而,很少有数学家完全熟悉物理学的概念。我们必须训练学生理解这些理论。Gieseker教授的目标是学习共形场论,这是一个非常基本的理论也是弦理论的基础。以此为基础,他将开发一门课程,供渴望学习这些理论的数学研究生使用。在研究方面,Gieseker教授最近的研究方向是无限维可积系统的变形理论,这与共形场理论密切相关。因此,理解共形场理论将丰富他的研究。在这个项目中,Gieseker教授将与加州大学洛杉矶分校物理系的Eric D'Hoker教授合作。该IGMS项目由MPS多学科活动办公室(OMA)和数学科学司(DMS)联合支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gieseker其他文献

David Gieseker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gieseker', 18)}}的其他基金

Stability of Algebraic Manifold
代数流形的稳定性
  • 批准号:
    9971387
  • 财政年份:
    1999
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Deformations of Integrable Systems
可积系统的变形
  • 批准号:
    9877151
  • 财政年份:
    1999
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9707747
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
The Spectral Theory of Difference Operators
差分算子的谱理论
  • 批准号:
    9622905
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stable Bundles on Algebraic Surfaces
数学科学:代数曲面上的稳定丛
  • 批准号:
    9305657
  • 财政年份:
    1993
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Algebro-Geometric Theory of Difference Equations
数学科学:差分方程的代数几何理论
  • 批准号:
    9102047
  • 财政年份:
    1991
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Anti Self-dual Connections on Algebraic Surfaces
数学科学:代数曲面上的反自对偶联系
  • 批准号:
    8904922
  • 财政年份:
    1989
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Combinatorial Decompositions of Representations of the Classical Algebras
数学科学:经典代数表示的组合分解
  • 批准号:
    8603228
  • 财政年份:
    1986
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Geometry of Algebraic Curves and its Applications
数学科学:代数曲线的几何及其应用
  • 批准号:
    8603175
  • 财政年份:
    1986
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Deformation Theory in Algebraic Geometry
数学科学:代数几何中的变形理论
  • 批准号:
    8301597
  • 财政年份:
    1983
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

相似海外基金

Physical study of simple and highly conformal total body irradiation
简单且高度适形的全身照射的物理研究
  • 批准号:
    17K10499
  • 财政年份:
    2017
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Complex Structures and Conformal Geometric Structures on Homogeneous Spaces
齐次空间上的复杂结构和共形几何结构研究
  • 批准号:
    25400066
  • 财政年份:
    2013
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of conformal gravity
共形重力研究
  • 批准号:
    415478-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Study on periodic surfaces using their representations by integrals of conformal one-forms
使用共形一式积分表示的周期曲面研究
  • 批准号:
    22540064
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on representations of conformal suepralgebras and applications to mathematical physics Study on representations of conformal suepralgebras and applications to mathematical physics
共形超代数表示及其在数学物理中的应用研究 共形超代数表示及其在数学物理中的应用研究
  • 批准号:
    21740007
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Continuations of a Riemann surface and dynamics of viscos fluid --- study of conformal embeddings and associated Poiseuille flow
黎曼曲面的延拓和粘性流体动力学——共形嵌入和相关泊肃叶流的研究
  • 批准号:
    20540174
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential geometric study of conformal and CR invariant theory via the ambient metric construction due to Fefferman and Graham
通过 Fefferman 和 Graham 的环境度量构造对共形和 CR 不变理论进行微分几何研究
  • 批准号:
    42840418
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Priority Programmes
A multicentre feasibility study of partial breast irradiation using 3D conformal radiotherapy for early breast cancer
使用 3D 适形放射治疗早期乳腺癌的部分乳房照射的多中心可行性研究
  • 批准号:
    nhmrc : 454391
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    NHMRC Project Grants
Differential geometric study of conformal and CR invariant theory via the ambient metric construction due to Fefferman and Graham
通过 Fefferman 和 Graham 的环境度量构造对共形和 CR 不变理论进行微分几何研究
  • 批准号:
    61601504
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Priority Programmes
Study of Conformal Geometry from the Viewpoint of Topology and Analysis
从拓扑与分析的角度研究共形几何
  • 批准号:
    18540098
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了