Nonparametric and Semiparametric Modelling for Data Analysis
数据分析的非参数和半参数建模
基本信息
- 批准号:9971602
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For many scientific problems, nonparametric and semiparametric statistical modelling can contribute to a better understanding and analysis. This includes the application of curve estimation techniques. The P.I. explores models which combine smooth (nonparametric), non-smooth (discontinuous) and parametric components. For high-dimensional data, such as curve data and longitudinal data, a sensible modelling approach includes components which achieve a dimension reduction. These are typically parametric parts of a model, and nonparametric smoothers are then applied in a second step to the dimension reduced data. The P.I. develops models which are geared towards scientific problems which yield data in the form of samples of curves, high dimensional data or discontinuous data. The techniques used include generalized linear models, estimating equations, change-point analysis, random effects modelling and smoothing (in particular, kernel and local polynomial smoothers).The proposed models with discontinuous parts are used to address the question whether the growth of children proceeds continuously or discontinuously. A second application is the modelling of DNA sequences here discontinuities in base frequencies enable DNA segmentation techniques. Further applications include edge detection in image analysis and the segmentation of continuously recorded financial data such as stock market indices. In addition, the P.I. constructs models for the efficient analysis of high dimensional data. An example is dose-response analysis in nutrition with the aim of finding optimal vitamin sources. The P.I. also proposes models for data where an entire function is recorded per experimental unit. Such data occur in many fields, notably the life sciences, and require innovative statistical approaches. A pertinent example are data on the individually recorded egg-laying behavior for a large cohort of medflies. A major question in aging research is the relation between reproduction and longevity. It is therefore of particular interest to apply the proposed models to explore this connection.
对于许多科学问题,非参数和半参数统计建模有助于更好地理解和分析。这包括曲线估计技术的应用。私家侦探探索结合了联合收割机平滑(非参数),非平滑(不连续)和参数组件的模型。对于高维数据,例如曲线数据和纵向数据,合理的建模方法包括实现降维的组件。这些通常是模型的参数部分,然后在第二步中将非参数平滑器应用于降维数据。 私家侦探开发面向科学问题的模型,这些问题以曲线样本,高维数据或不连续数据的形式产生数据。所使用的技术包括广义线性模型,估计方程,变点分析,随机效应建模和平滑(特别是,核和局部多项式平滑器)。所提出的模型与不连续的部分被用来解决的问题,儿童的增长是否连续或不连续。第二个应用是DNA序列的建模,这里碱基频率的不连续性使DNA分割技术成为可能。其他应用包括图像分析中的边缘检测和连续记录的金融数据(如股票市场指数)的分割。此外,PI。为高维数据的有效分析构建模型。一个例子是营养方面的剂量反应分析,目的是找到最佳的维生素来源。私家侦探还提出了数据模型,其中每个实验单元记录整个函数。这种数据出现在许多领域,特别是生命科学领域,需要创新的统计方法。一个相关的例子是一个大的地中海果蝇群体的单独记录的产卵行为的数据。老龄化研究的一个主要问题是生殖与寿命之间的关系。因此,它是特别感兴趣的应用所提出的模型来探索这种联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans-Georg Mueller其他文献
Hans-Georg Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans-Georg Mueller', 18)}}的其他基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Models for Complex Functional and Object Data
复杂功能和对象数据的模型
- 批准号:
2014626 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
From Functional Data to Random Objects
从功能数据到随机对象
- 批准号:
1712864 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Statistical Representations and Algorithms for Brain Connectivity
大脑连接的统计表示和算法
- 批准号:
1228369 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Nonlinear Models for Functional Data Analysis
函数数据分析的非线性模型
- 批准号:
1104426 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Functional Models for Complex and High-Dimensional Data
复杂和高维数据的函数模型
- 批准号:
0806199 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Nonparametric Methods for Functional Data
函数数据的非参数方法
- 批准号:
0505537 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: New Development on Nonparametric Modeling and Inferences with Biological Applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
- 批准号:
0354448 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Nonparametric and Semiparametric Models for High-Dimensional Data
高维数据的非参数和半参数模型
- 批准号:
0204869 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Semiparametric Techniques for Data Exploitation across Heterogeneous Populations
跨异质群体数据开发的半参数技术
- 批准号:
2310942 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
- 批准号:
2310578 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
LEAPS-MPS: Flexible Semiparametric Transformation Models with Applications to Personalized Medicine
LEAPS-MPS:灵活的半参数转换模型及其在个性化医疗中的应用
- 批准号:
2316868 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Development of a semiparametric approach to accurate risk assessment and its applications
准确风险评估的半参数方法的开发及其应用
- 批准号:
23K16850 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
- 批准号:
RGPIN-2018-04328 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210659 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210658 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual