From Functional Data to Random Objects
从功能数据到随机对象
基本信息
- 批准号:1712864
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large and complex data that are increasingly collected across the sciences and by companies pose novel challenges for statistical analysis, due to their complexity and size. Specific applications that motivate this research come from brain imaging, genomics, and the social sciences. To make sense of such data and extract relevant features, statistical methodology that is suitable for the analysis of large samples of complex random objects is needed. Examples of these objects include networks, distribution functions, and covariance matrices. A challenge is that common algebraic operations such as sums or differences are not defined for such objects. In many instances, objects may also be repeatedly observed over time, and the quantification of their time dynamics is then of interest. In this project, statistical methodology that addresses these basic data analytic needs is developed under minimal assumptions. These developments also include the theoretical foundations of this methodology and computational implementations. This methodology is expected to lead to new insights by quantifying phenomena such as changes in mortality or income distributions over calendar years, or changes in brain connectivity networks with aging to allow researchers to distinguish normal and pathological aging processes. Procedures are also developed to test for significant differences between groups of random objects, for example, comparisons between mortality distributions of countries, including the identification of clusters. The methodology to be developed is based on delicate extensions of basic statistical notions such as population and sample mean, variance, regression and analysis of variance to the case of more complex spaces of random objects.Over the past decade, there have been rapid advances and substantial developments for functional data, including advanced methods for functional regression. The developments and methodology for Functional Data Analysis are limited to Hilbert space valued random variables, such as square integrable random functions, which limits their applicability. This research is motivated by the increasing prevalence of examples where random objects are not in a Hilbert space. Key objects of interest are distributions, networks and covariance matrices, in addition to general metric space valued random objects. Core concepts that will be applied and appropriately extended to these random objects include Frechet mean, Frechet variance, and Frechet regression. For longitudinally observed random objects, the notion of a general Frechet integral will serve to quantify projections in general spaces. Such projections will be studied for their use in representing time-varying random objects. The tools that will be developed are based only on distances, and are therefore suitable for general metric space valued objects. For special classes of objects such as distributions, additional characterizations such as manifold representations and Wasserstein covariance will also be developed and illustrated in applications.
由于数据的复杂性和规模,越来越多的科学领域和公司收集了大量复杂的数据,这给统计分析带来了新的挑战。激发这项研究的具体应用来自脑成像、基因组学和社会科学。为了理解这些数据并提取相关特征,需要适用于复杂随机对象的大样本分析的统计方法。这些对象的例子包括网络、分布函数和协方差矩阵。一个挑战是,诸如和或差之类的常见代数操作没有为这些对象定义。在许多情况下,随着时间的推移,物体也可能被反复观察,因此它们的时间动态的量化是有意义的。在这个项目中,在最小的假设下制定了处理这些基本数据分析需求的统计方法。这些发展还包括该方法的理论基础和计算实现。这种方法有望通过量化诸如历年死亡率或收入分布的变化,或大脑连接网络随年龄增长的变化等现象,从而使研究人员能够区分正常和病理衰老过程,从而产生新的见解。还制定了检验随机对象组之间的重大差异的程序,例如,比较各国的死亡率分布,包括确定聚类。待开发的方法是基于对基本统计概念的精细扩展,如总体和样本均值、方差、回归和方差分析,以适用于更复杂的随机对象空间。在过去的十年中,功能数据有了快速的发展和实质性的发展,包括功能回归的先进方法。功能数据分析的发展和方法仅限于希尔伯特空间值随机变量,如平方可积随机函数,这限制了它们的适用性。这项研究的动机是越来越普遍的例子,其中随机对象不在希尔伯特空间。除了一般的度量空间值随机对象外,感兴趣的关键对象是分布、网络和协方差矩阵。将应用并适当扩展到这些随机对象的核心概念包括Frechet mean, Frechet variance和Frechet regression。对于纵向观察的随机物体,一般Frechet积分的概念将用于量化一般空间中的投影。我们将研究这种投影在表示时变随机物体时的用途。将开发的工具仅基于距离,因此适用于一般度量空间值对象。对于特殊类型的对象,如分布,附加的表征,如流形表示和瓦瑟斯坦协方差也将在应用中开发和说明。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Additive Functional Regression for Densities as Responses
- DOI:10.1080/01621459.2019.1604365
- 发表时间:2020-04
- 期刊:
- 影响因子:3.7
- 作者:Kyunghee Han;H. Müller;B. Park
- 通讯作者:Kyunghee Han;H. Müller;B. Park
Frechet estimation of time-varying covariance matrices from sparse data, with application to the regional co-evolution of myelination in the developing brain
Frechet从稀疏数据估计时变协方差矩阵,并应用于发育中大脑中髓鞘形成的区域协同进化
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1.8
- 作者:Petersen, A.;Deoni, S.;Müller, H.G.
- 通讯作者:Müller, H.G.
Longitudinal associations between white matter maturation and cognitive development across early childhood
- DOI:10.1002/hbm.24690
- 发表时间:2019-10-01
- 期刊:
- 影响因子:4.8
- 作者:Dai, Xiongtao;Hadjipantelis, Pantelis;Muller, Hans-Georg
- 通讯作者:Muller, Hans-Georg
Quantifying and Visualizing Intraregional Connectivity in Resting-State Functional Magnetic Resonance Imaging with Correlation Densities
- DOI:10.1089/brain.2018.0591
- 发表时间:2019-02
- 期刊:
- 影响因子:3.4
- 作者:Alexander Petersen;Chun-Jui Chen;H. Müller
- 通讯作者:Alexander Petersen;Chun-Jui Chen;H. Müller
Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data
- DOI:10.1080/01621459.2017.1356321
- 发表时间:2018-01-01
- 期刊:
- 影响因子:3.7
- 作者:Dawson, Matthew;Mueller, Hans-Georg
- 通讯作者:Mueller, Hans-Georg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans-Georg Mueller其他文献
Hans-Georg Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans-Georg Mueller', 18)}}的其他基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Models for Complex Functional and Object Data
复杂功能和对象数据的模型
- 批准号:
2014626 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Statistical Representations and Algorithms for Brain Connectivity
大脑连接的统计表示和算法
- 批准号:
1228369 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Nonlinear Models for Functional Data Analysis
函数数据分析的非线性模型
- 批准号:
1104426 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Functional Models for Complex and High-Dimensional Data
复杂和高维数据的函数模型
- 批准号:
0806199 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Nonparametric Methods for Functional Data
函数数据的非参数方法
- 批准号:
0505537 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: New Development on Nonparametric Modeling and Inferences with Biological Applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
- 批准号:
0354448 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Nonparametric and Semiparametric Models for High-Dimensional Data
高维数据的非参数和半参数模型
- 批准号:
0204869 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Nonparametric and Semiparametric Modelling for Data Analysis
数据分析的非参数和半参数建模
- 批准号:
9971602 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
- 批准号:
2311035 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Acceleration of kernel with random access and data recurrence on many computer architectures
在许多计算机体系结构上通过随机访问和数据重现来加速内核
- 批准号:
22K12057 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
- 批准号:
2152588 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Random Effects Modelling and Inference for Skewed Data of Complex Correlation Structures
复杂相关结构的倾斜数据的随机效应建模和推理
- 批准号:
RGPIN-2020-04751 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Characterization of network structure in random graph models and neural data
随机图模型和神经数据中网络结构的表征
- 批准号:
574654-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
- 批准号:
2246449 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Random effects modeling of longitudinal and spatial data with and without zero-inflation.
有和没有零通货膨胀的纵向和空间数据的随机效应建模。
- 批准号:
RGPIN-2017-04246 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Methods for statistical analysis with nonmonotone missing at random data
随机数据非单调缺失的统计分析方法
- 批准号:
DDG-2022-00021 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Development Grant
Partial recovery of missing responses - a toolbox for efficient design and analysis when data may be missing not at random
部分恢复丢失的响应 - 当数据可能非随机丢失时进行有效设计和分析的工具箱
- 批准号:
EP/V00641X/2 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Fluctuations in Polymers and Random Data Partial Differential Equations
聚合物的波动和随机数据偏微分方程
- 批准号:
2154090 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant