Functional Models for Complex and High-Dimensional Data

复杂和高维数据的函数模型

基本信息

  • 批准号:
    0806199
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Innovative methodology for Functional Data Analysis facilitates improved data analysis for longitudinal studies, e-commerce online bidding, genomic studies, (bio)demography and many other areas of the social, biological and physical sciences problems. The proposed functional approaches provide highly flexible ways to characterize such data, and especially to study their time-dynamic aspects. The investigator extends the applicability of Functional Data Analysis to data structures that have not been widely considered within this framework. This includes point processes, high-dimensional (large p, small n) data and sparsely observed stochastic processes as they occur in longitudinal and repeated measurements data. Especially for high-dimensional non-functional and point process data, Functional Data Analysis approaches have the potential to lead to transformative rather than merely incremental improvements. The investigator develops flexible functional and varying-coefficient models for functional regression and correlation. Current modeling approaches are too restrictive to be of broad applicability and more general models are needed. Similarly, the subarea of curve warping has seen much development lately but there remain many important open questions to be investigated. The investigator combines theoretical analysis, simulations, and data applications to conduct this research and applies the methods to data from e-commerce, biodemography, longitudinal studies and gene expression.The investigator develops statistical methodology that is immediately useful for the analysis of large and complex data in genomics, demography and biodemography. These new analysis tools, which fall into the field of Functional Data Analysis, are geared towards gaining a better understanding of time-dependent processes. These include a variety of commonly observed phenomena such as growth, aging, bidding during an online auction, or repeated observations of a recurring incident such as an asthma attack. The methods developed by the investigator elucidate the underlying dynamics of such phenomena. Application of these methods in particular enables insights into the mechanisms of aging and longevity, the dynamics of on-line auctions, and other instances of e-commerce. The investigator extends the scope of these methods further such that for example improved prediction of specific risks becomes feasible, based on a recording of a subject's gene expression profile.
功能数据分析的创新方法促进了对纵向研究、电子商务在线竞标、基因组研究、(生物)人口学和许多其他社会科学、生物和物理科学问题领域的数据分析的改进。所提出的功能方法提供了高度灵活的方法来表征这些数据,特别是研究它们的时间动态方面。研究人员将功能数据分析的适用范围扩展到该框架中未被广泛考虑的数据结构。这包括点过程、高维(大p,小n)数据以及出现在纵向和重复测量数据中的稀疏观测随机过程。特别是对于高维的非功能和点过程数据,功能数据分析方法具有导致变革性改进的潜力,而不仅仅是增量改进。研究人员开发了用于函数回归和相关的灵活的泛函和变系数模型。目前的建模方法受到太多的限制,不能广泛适用,需要更通用的模型。同样,曲线翘曲的分区最近也有了很大的发展,但仍然有许多重要的开放问题需要研究。研究人员将理论分析、模拟和数据应用相结合来进行这项研究,并将这些方法应用于电子商务、生物人口学、纵向研究和基因表达的数据。研究人员开发的统计方法立即适用于基因组学、人口学和生物人口学中的大型和复杂数据的分析。这些新的分析工具属于功能数据分析领域,旨在更好地理解依赖时间的过程。这些现象包括各种常见的现象,如生长、老化、在线拍卖期间的竞价,或反复观察到反复发生的事件,如哮喘发作。研究人员开发的方法阐明了这些现象的潜在动力学。这些方法的应用尤其有助于深入了解衰老和长寿的机制、在线拍卖的动态以及电子商务的其他实例。研究人员进一步扩展了这些方法的范围,例如,基于受试者基因表达谱的记录,对特定风险的改进预测变得可行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans-Georg Mueller其他文献

Hans-Georg Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hans-Georg Mueller', 18)}}的其他基金

Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Models for Complex Functional and Object Data
复杂功能和对象数据的模型
  • 批准号:
    2014626
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
From Functional Data to Random Objects
从功能数据到随机对象
  • 批准号:
    1712864
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Modeling Complex Functional Data
复杂功能数据建模
  • 批准号:
    1407852
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Statistical Representations and Algorithms for Brain Connectivity
大脑连接的统计表示和算法
  • 批准号:
    1228369
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Nonlinear Models for Functional Data Analysis
函数数据分析的非线性模型
  • 批准号:
    1104426
  • 财政年份:
    2011
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Nonparametric Methods for Functional Data
函数数据的非参数方法
  • 批准号:
    0505537
  • 财政年份:
    2005
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: New Development on Nonparametric Modeling and Inferences with Biological Applications
合作研究:FRG:非参数建模和生物学应用推论的新进展
  • 批准号:
    0354448
  • 财政年份:
    2004
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Nonparametric and Semiparametric Models for High-Dimensional Data
高维数据的非参数和半参数模型
  • 批准号:
    0204869
  • 财政年份:
    2002
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Nonparametric and Semiparametric Modelling for Data Analysis
数据分析的非参数和半参数建模
  • 批准号:
    9971602
  • 财政年份:
    1999
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Automated Modelling Assistance for the Creation of Complex Planning Models
用于创建复杂规划模型的自动建模协助
  • 批准号:
    DE240101245
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Early Career Researcher Award
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
eMB: Bridging the Gap Between Agent Based Models of Complex Biological Phenomena and Real-World Data Using Surrogate Models
eMB:使用代理模型弥合基于代理的复杂生物现象模型与真实世界数据之间的差距
  • 批准号:
    2324818
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
General applicability and quantitative predictability of complex population-based crystallization models
基于复杂群体的结晶模型的普遍适用性和定量可预测性
  • 批准号:
    2903595
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
LEAPS-MPS: Development of Models in Spatial Statistics for Complex Policing and Social Science Applications
LEAPS-MPS:复杂警务和社会科学应用的空间统计模型的开发
  • 批准号:
    2316857
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Integrated models of learning and decision making in complex tasks
复杂任务中学习和决策的集成模型
  • 批准号:
    DE230100171
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Early Career Researcher Award
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
  • 批准号:
    10717244
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了