Calculus of Functors and Homotopy Theory

函子微积分与同伦论

基本信息

  • 批准号:
    9971855
  • 负责人:
  • 金额:
    $ 6.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9971855Arone Arone is interested in applying the theory of calculus of functors(developed by T. Goodwillie and M. Weiss) to study the unstablehomotopy of such spaces as spheres and classifying spaces of compactLie groups. Calculus of functors allows one to introduce certain``derivatives'' of homotopy groups. If one understands thesederivatives well, one can use them to recover a lot of informationabout unstable homotopy theory (this is analogous to the fact that ifone knows all the derivatives of an ordinary function at a point, onecan often recover a lot of information about the function by means ofTaylor series). The derivatives are really objects of stable homotopytheory, and they normally come equipped with interesting symmetries ofcertain classical groups, such as the symmetric or orthogonal groups(division by the action of the symmetric group corresponds to divisionby n! in ordinary Taylor series). Thus calculus allows one to reducequestions about unstable homotopy theory to questions aboutequivariant stable homotopy theory. This does not yield an effectivemethod for calculating homotopy groups (there probably is no suchmethod), but it does allow one to make interesting qualitativestatements about the global structure of homotopy theory. Analyzingthe derivatives of different objects, together with the accompanyingsymmetries, has been the focus of much of Arone's work. Thesederivatives seem to be very interesting objects on their own, andstudying them involves combining methods from stable homotopy theory,equivariant topology, and group cohomology in fresh and unexpectedways. Many basic questions in mathematics, and in topology, in particular,are of the following form: given two objects, describe the possiblefunctions between them. For instance, one can ask to describe thespace of continuous maps between two topological spaces, or the spaceof embeddings of a circle into some physical space (this is informallyknown as the space of ``knots''). These questions are usually verydifficult. This is so because the dependence of the space offunctions on the source and the target is very complicated.Informally, one could say that the space of functions is a complicatedfunction of two variables. It turns out that, in analogy to ordinarydifferential calculus, one can develop a theory of ``Taylor series''of sorts for this kind of function and use it to approximatecomplicated spaces such as function spaces by simpler spaces, inmuch the same way as an ordinary function can be approximated by itsTaylor polynomials. This very striking idea was conceived byT. Goodwillie. Much of Arone's work has focused on understanding the``Taylor polynomials'' and the ``Derivatives'' in this context. Thishas proved to be a fascinating and rewarding journey, which hasalready led to interesting new results in (algebraic) topology. Someof the results are of such a universal nature that there is at least aslight hope that this work will have an impact on mathematics outsidehardcore algebraic topology.***
9971855Arone Arone对应用函子演算理论(由T. Goodwillie和M. Weiss提出)研究球和紧李群的分类空间的不稳定同伦很感兴趣。函子演算允许引入同伦群的某些“导数”。如果一个人很好地理解了这些导数,他就可以用它们来恢复很多关于不稳定同伦理论的信息(这类似于如果一个人知道一个普通函数在一点上的所有导数,那么他就可以通过泰勒级数来恢复很多关于这个函数的信息)。导数实际上是稳定同伦理论的对象,它们通常具有某些经典群的有趣对称性,例如对称群或正交群(被对称群的作用除法对应于被n除法!)一般泰勒级数)。因此,微积分允许人们将不稳定同伦论的问题简化为准变稳定同伦论的问题。这并没有产生计算同伦群的有效方法(可能没有这样的方法),但它确实允许人们对同伦理论的整体结构做出有趣的定性证明。分析不同物体的导数,以及伴随的对称性,一直是Arone工作的重点。这些导数本身似乎是非常有趣的对象,研究它们涉及到以新颖和意想不到的方式结合稳定同伦理论,等变拓扑和群上同伦的方法。数学中的许多基本问题,特别是拓扑学中的问题,都具有以下形式:给定两个对象,描述它们之间可能的函数。例如,人们可以要求描述两个拓扑空间之间的连续映射空间,或者一个圆嵌入到某个物理空间的空间(这被非正式地称为“结”空间)。这些问题通常很难。这是因为空间函数对源和目标的依赖是非常复杂的。非正式地说,函数空间是两个变量的复杂函数。事实证明,与普通微分学类似,人们可以为这类函数建立一种“泰勒级数”理论,并用它来近似复杂的空间,比如用简单的空间来近似函数空间,就像普通函数可以用它的泰勒多项式来近似一样。这个非常引人注目的想法是由t提出的。Goodwillie。Arone的大部分工作都集中在理解这种情况下的“泰勒多项式”和“导数”。这已经被证明是一个迷人而有益的旅程,它已经导致了(代数)拓扑中有趣的新结果。有些结果具有如此普遍的性质,至少有一点希望,这项工作将对核心代数拓扑之外的数学产生影响

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Arone其他文献

The spectrum of excisive functors
切除函子的谱
  • DOI:
    10.1007/s00222-025-01338-9
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Gregory Arone;Tobias Barthel;Drew Heard;Beren Sanders
  • 通讯作者:
    Beren Sanders

Gregory Arone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Arone', 18)}}的其他基金

Mid-Atlantic Topology Conference
大西洋中部拓扑会议
  • 批准号:
    1535958
  • 财政年份:
    2015
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant
Calculus of Functors, Operads, and Manifolds
函子、运算和流形的微积分
  • 批准号:
    0605073
  • 财政年份:
    2006
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant
Calculus of Functors and Applications
函子微积分及其应用
  • 批准号:
    0307069
  • 财政年份:
    2003
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant
Calculus of Functors and Homotopy Theory
函子微积分与同伦论
  • 批准号:
    0196350
  • 财政年份:
    2000
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant
New Approaches to Global Homotopy Theory
全局同伦理论的新方法
  • 批准号:
    9704761
  • 财政年份:
    1997
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant

相似海外基金

Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
  • 批准号:
    2302568
  • 财政年份:
    2023
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Continuing Grant
Functors in Homotopy Theory
同伦理论中的函子
  • 批准号:
    RGPIN-2020-05466
  • 财政年份:
    2022
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Discovery Grants Program - Individual
Functors in Homotopy Theory
同伦理论中的函子
  • 批准号:
    RGPIN-2020-05466
  • 财政年份:
    2021
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Discovery Grants Program - Individual
Mackey functors for fusion systems
融合系统的麦基函子
  • 批准号:
    2436890
  • 财政年份:
    2020
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Studentship
Functors in Homotopy Theory
同伦理论中的函子
  • 批准号:
    RGPIN-2020-05466
  • 财政年份:
    2020
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Discovery Grants Program - Individual
Abstract tangent functors
抽象正切函子
  • 批准号:
    435766-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Discovery Grants Program - Individual
On quasihereditary covers and functors
关于准遗传覆盖和函子
  • 批准号:
    18K03250
  • 财政年份:
    2018
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Calculus of Functors and Applications in Homotopy Theory
RUI:函子微积分及其在同伦理论中的应用
  • 批准号:
    1709032
  • 财政年份:
    2017
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Standard Grant
Abstract tangent functors
抽象正切函子
  • 批准号:
    435766-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Discovery Grants Program - Individual
An adjoint functors approach to models of cognition
认知模型的伴随函子方法
  • 批准号:
    16KT0025
  • 财政年份:
    2016
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了