Asymptotic and Variational Problems in Nonpositive Curvature
非正曲率的渐近和变分问题
基本信息
- 批准号:9972425
- 负责人:
- 金额:$ 8.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9972425PI: Christopher JudgeAbstract: We consider the asymptotic behavior of the geodesic flow and Laplace eigenvalues on manifolds of nonpositive curvature with an emphasis on aspects related to metric variation. For example, the billiard ball flow of a rational polygon belongs to a natural moduli space of flows, and the system's periodic asymptotic behavior can be deduced from knowledge of the moduli space. Although, the geodesic flow and the Laplace spectrum are known to be related via trace formulae, physicists have long believed in a more direct relationship provided by the `correspondence principle'. This relationship will be considered in the context of the moduli space theory.The objects under study are models for physical systems. In particular, we consider here the asymptotic behavior of particles, both classical and quantum, under varying conditions. The systems we consider exhibit a high degree of chaotic behavior as is often the case in the real world. Although these systems are simple abstractions, they represent a testing ground for further understanding of real world systems. Eventual 'downstream' applications could include high energy physics and cryptography.
提议:DMS-9972425PI:Christopher Judge摘要:我们考虑非正曲率流形上测地流和拉普拉斯特征值的渐近行为,重点讨论与度量变化有关的方面。例如,有理多边形的台球流属于流的自然模空间,系统的周期渐近行为可以从该模空间的知识中推导出来。虽然已知测地线流和拉普拉斯谱通过迹公式联系在一起,但物理学家长期以来一直相信“对应原理”提供了一种更直接的关系。这种关系将在模空间理论的背景下考虑。研究的对象是物理系统的模型。特别是,我们在这里考虑粒子的渐近行为,无论是经典的还是量子的,在不同的条件下。我们认为的系统表现出高度的混乱行为,就像现实世界中经常出现的情况一样。尽管这些系统是简单的抽象,但它们代表了进一步理解真实世界系统的试验场。最终的“下游”应用可能包括高能物理和密码学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Judge其他文献
First scientific dives of the Nereid Under Ice hybrid ROV in the Arctic Ocean.
Nereid Under Ice 混合遥控潜水器在北冰洋进行首次科学潜水。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
C. German;A. Boetius;L. Whitcomb;J. Bailey;Christopher Judge;C. McFarland;S. Suman;Stephen Elliott;C. Katlein;Stefanie Arndt;A. Bowen;D. Yoerger;J. Kinsey;L. Mayer;M. Nicolaus;S. Laney;H. Singh;T. Maksym - 通讯作者:
T. Maksym
Christopher Judge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Judge', 18)}}的其他基金
2005 Bloomington Geometry Workshop
2005年布卢明顿几何研讨会
- 批准号:
0503596 - 财政年份:2005
- 资助金额:
$ 8.14万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508876 - 财政年份:1995
- 资助金额:
$ 8.14万 - 项目类别:
Fellowship Award
相似海外基金
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 8.14万 - 项目类别:
Continuing Grant
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
- 批准号:
2307971 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Continuing Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Discovery Early Career Researcher Award
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Standard Grant
CRII: AF: Variational Inequality and Saddle Point Problems with Complex Constraints
CRII:AF:具有复杂约束的变分不等式和鞍点问题
- 批准号:
2245705 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2307273 - 财政年份:2023
- 资助金额:
$ 8.14万 - 项目类别:
Continuing Grant
Variational Problems with Singularities
奇点变分问题
- 批准号:
RGPIN-2019-05987 - 财政年份:2022
- 资助金额:
$ 8.14万 - 项目类别:
Discovery Grants Program - Individual