Dynamics and Structure in Complex Disordered FIC Electolytes: Is There a Maximum Ionic Conductivity in the Solid State?

复杂无序 FIC 电解质的动力学和结构:固态中是否存在最大离子电导率?

基本信息

  • 批准号:
    9972466
  • 负责人:
  • 金额:
    $ 49.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2004-12-31
  • 项目状态:
    已结题

项目摘要

9972466MartinThis project will develop fundamental new understandings of charge transport in disordered electrolytes. The ever increasing dependence upon and the performance requirements of electrochemically-based portable energy sources, such as batteries and fuel cells, will rapidly outpace the current technological benchmarks being set by the core technologies of these devices. Battery and fuel cell electrolytes, for example, will have to increase their ionic conductivity by more than a couple of orders of magnitude to keep pace with the ever increasing drain rates required of these devices. That such increases in the ionic conductivities of the solid electrolytes in batteries and fuel cells are possible was not questioned a few years ago. New research by the PI has shown that such may not the be the case. His work on chemically optimized fast ion conducting (FIC) glasses has shown that a strong non-Arrhenius temperature dependence of the ionic conductivity limits the ionic conductivity to values 100 to 1000 times below that expected. This phenomenon will have tremendous design implications for the multitude of electrochemical-energy based devices that are on the marketplace today and whose numbers are growing at an exponential rate. In this project, the conductivity of new silver-ion conductors will be measured to higher temperatures and wider frequency ranges to determine if the conductivity reaches a saturating or maximum value. Then, new lithium-ion conductors will be measured to see if the non-Arrhenius conductivity is universal. Wide frequency range nuclear spin lattice relaxation rate (NSLR) and conductivity measurements will be combined to determine if a temperature independent distribution of activation energies can be used to fit the temperature and frequency dependence of both the NSLR and the conductivity. Such fitting will be a powerful test of whether simple activated process theory describes the ion dynamics or whether additional dynamical effects must be included. In addition, theoretical models of the temperature and frequency dependence of the conductivity that include strong many-body interactions will be developed, inelastic neutron scattering and high frequency conductivity studies of the full time-domain response from the strongly interacting regime into the short time weakly interacting regime will be performed, molecular dynamics simulations of the atomic-level conduction topologies will be developed, and elastic neutron scattering studies will be performed to probe glass structure at the intermediate range level where site connectivity is important. The project will involve graduate student research teams working with undergraduate and high school students in a strong collaboration with both US and international researchers as well as a domestic battery manufacturer. %%%The ever increasing dependence upon and the performance requirements of electrochemically-based portable energy sources, such as batteries and fuel cells, used in so many consumer products, demand better and better energy sources. This project will provide understanding of the relationships between the chemistry of the electrolyte and its performance and thus will enable design at the nano-scale of new electrolytes with order of magnitude increases in ionic conductivities. The strong research team the PI has built, along with the international collaborations, promise advances in this area.***
9972466Martin 该项目将对无序电解质中的电荷传输产生根本性的新理解。 对基于电化学的便携式能源(例如电池和燃料电池)的日益增长的依赖和性能要求将迅速超过这些设备的核心技术设定的当前技术基准。 例如,电池和燃料电池电解质必须将其离子电导率提高几个数量级以上,才能跟上这些设备所需不断增加的消耗率。几年前,人们并没有质疑电池和燃料电池中固体电解质离子电导率的这种增加是可能的。 PI 的新研究表明,情况可能并非如此。 他在化学优化的快离子传导 (FIC) 玻璃方面的工作表明,离子电导率的强烈非阿累尼乌斯温度依赖性将离子电导率限制为低于预期值 100 至 1000 倍。 这种现象将对当今市场上众多基于电化学能源的设备产生巨大的设计影响,这些设备的数量正在以指数速度增长。 在这个项目中,新型银离子导体的电导率将在更高的温度和更宽的频率范围内进行测量,以确定电导率是否达到饱和或最大值。 然后,将测量新的锂离子导体,看看非阿累尼乌斯电导率是否具有普遍性。 将宽频率范围核自旋晶格弛豫率 (NSLR) 和电导率测量相结合,以确定是否可以使用与温度无关的活化能分布来拟合 NSLR 和电导率的温度和频率依赖性。 这种拟合将有力地检验简单的活化过程理论是否描述了离子动力学,或者是否必须包括额外的动力学效应。 此外,将开发包括强多体相互作用的电导率的温度和频率依赖性的理论模型,将进行从强相互作用状态到短时弱相互作用状态的全时域响应的非弹性中子散射和高频电导率研究,将开发原子级传导拓扑的分子动力学模拟,并将进行弹性中子散射研究以探测玻璃结构 站点连接性很重要的中间范围级别。 该项目将由研究生研究团队与本科生和高中生合作,与美国和国际研究人员以及国内电池制造商密切合作。 %%%许多消费产品中使用的基于电化学的便携式能源(例如电池和燃料电池)对电池和燃料电池的依赖性和性能要求不断增加,因此需要越来越好的能源。该项目将让人们了解电解质的化学性质与其性能之间的关系,从而能够在纳米级设计新型电解质,离子电导率会增加一个数量级。 PI 建立的强大研究团队以及国际合作有望在这一领域取得进展。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Martin其他文献

The policy and politics of free swimming
自由游泳的政策和政治
Long-term effects of multiple concussions on prefrontal cortex oxygenation during repeated squat-stands in retired contact sport athletes
多次脑震荡对退役接触运动运动员反复深蹲站立过程中前额皮质氧合的长期影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Luke W. Sirant;Jyotpal Singh;Steve Martin;C. Gaul;L. Stuart;D. Candow;Cameron S. Mang;J. Neary
  • 通讯作者:
    J. Neary
Structure and properties of glasses in the MI + M<sub>2</sub>S + (0.1Ga<sub>2</sub>S<sub>3</sub> + 0.9GeS<sub>2</sub>), M = Li, Na, K and Cs, system
  • DOI:
    10.1016/j.jnoncrysol.2007.11.006
  • 发表时间:
    2008-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Wenlong Yao;Kyle Berg;Steve Martin
  • 通讯作者:
    Steve Martin
A Theoretical Framework for Facilitating Methodological Choice
  • DOI:
    10.1023/a:1022952114289
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Steve Clarke;Brian Lehaney;Steve Martin
  • 通讯作者:
    Steve Martin
Not) Recognising Famous Gaits
不)识别著名的步态
  • DOI:
  • 发表时间:
    1977
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kleiner;B. Damon;Woody Allen;Sylvester Stallone;John Travolta;Robert De Niro;Jack Nicholson;Michael Caine;J. Wayne;Charlie Chaplin;Clint Eastwood;Steve Martin;R. Redford
  • 通讯作者:
    R. Redford

Steve Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Martin', 18)}}的其他基金

EAGER: New Lithium Oxy-ThioBorate Solid State Electrolytes
EAGER:新型氧硫代硼酸锂固态电解质
  • 批准号:
    2234046
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Advanced Multi-Functional Wide-Wavelength-Range Fourier Transform Infrared Spectrometer for Multi-Materials Characterization
MRI:购买先进的多功能宽波长范围傅里叶变换红外光谱仪,用于多种材料表征
  • 批准号:
    2117445
  • 财政年份:
    2021
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Synthesis, Structures, and Properties of New Mixed Oxy-Sulfide-Nitride Glassy Solid Electrolytes
新型混合氧-硫化物-氮化物玻璃态固体电解质的合成、结构和性能
  • 批准号:
    1936913
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
SusChEM: Ultra-High Li+ Ion Conductivity Chemically Stable Mechanically Strong Mixed Oxy-Sulfide Solid Electrolytes
SusChEM:超高锂离子电导率、化学稳定、机械强度高的混合硫氧化物固体电解质
  • 批准号:
    1438223
  • 财政年份:
    2014
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Diametric Extremes in the Ionic Conductivity of Mixed Glass Former Solid Electrolytes
混合玻璃前体固体电解质离子电导率的直径极值
  • 批准号:
    1304977
  • 财政年份:
    2013
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
REU Site: Materials Education and Research on Far-From-Equilibrium Materials, Structures, Properties, and Processes
REU 网站:远离平衡材料、结构、性能和过程的材料教育和研究
  • 批准号:
    0755231
  • 财政年份:
    2008
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Materials World Network: An International Collaborative Educational and Research Program in the Study of Mixed Glass Former Phenomena in Materials
材料世界网络:研究材料中混合玻璃前体现象的国际合作教育和研究计划
  • 批准号:
    0710564
  • 财政年份:
    2007
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Acquisition of a Comprehensive High Temperature and High Purity Glove Box Materials Processing Facility for Education and Research
收购用于教育和研究的综合高温高纯度手套箱材料加工设施
  • 批准号:
    0315685
  • 财政年份:
    2003
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Acquisition of a Comprehensive Multi-Wavelength Laser Raman System for Materials Education and Research
采购用于材料教育和研究的综合多波长激光拉曼系统
  • 批准号:
    0216830
  • 财政年份:
    2002
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Acquisition of a Comprehensive, Dynamic Thermal Analysis System
采购综合动态热分析系统
  • 批准号:
    9625861
  • 财政年份:
    1996
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
  • 批准号:
    2237542
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nanoscale structure and dynamics of a cell-cell adhesion complex
合作研究:细胞-细胞粘附复合物的纳米级结构和动力学
  • 批准号:
    2202202
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    2308660
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nanoscale structure and dynamics of a cell-cell adhesion complex
合作研究:细胞-细胞粘附复合物的纳米级结构和动力学
  • 批准号:
    2202203
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
  • 批准号:
    RGPIN-2019-04242
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
  • 批准号:
    RGPIN-2019-04242
  • 财政年份:
    2021
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
Laser Spectroscopy of Isolated Molecules and Complex Systems: Structure, Dynamics and Analysis
孤立分子和复杂系统的激光光谱:结构、动力学和分析
  • 批准号:
    RGPIN-2019-04242
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    1942665
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Is snail mucus useful for understanding the complex intertidal community structure and dynamics?
蜗牛粘液对于理解复杂的潮间带群落结构和动态有用吗?
  • 批准号:
    20K15874
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of complex gene expression regulation dynamics through higher-order genome structure
通过高阶基因组结构阐明复杂的基因表达调控动态
  • 批准号:
    19K06612
  • 财政年份:
    2019
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了