Diametric Extremes in the Ionic Conductivity of Mixed Glass Former Solid Electrolytes
混合玻璃前体固体电解质离子电导率的直径极值
基本信息
- 批准号:1304977
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTIONThe sun, a very large source of untapped energy, has a cyclic pattern of night and day. Therefore, energy storage systems are required and batteries are promising technologies being considered if problems of safety, high cost, and low efficiency can be resolved. Given the size of energy storage systems required, very low cost and earth abundant sodium batteries are being actively researched. Sodium batteries today, however, must operate at 300 C because the battery separator, a solid electrolyte, has a low Na+ ion conductivity and this causes such batteries to be inefficient, unsafe, and expensive. For these reasons, it is important to better understand Na+ ion motion in the solid state so that newer better conducting solid electrolytes can be developed. In this project, new glassy solid electrolytes are being studied that can be made very inexpensively with high Na+ ion conductivities. In particular, Martin's group is examining new ternary glasses based upon two network formers (e.g., silicon, boron, or germanium) that form a highly cross-linked arrangement of chemical bonds. These particular glasses are being studied because it has been found that in some combinations of two glass formers the Na+ ion conduction increases dramatically whereas for other combinations the Na+ ion motion decreases significantly. By studying these two different systems and their opposite behaviors, it will be possible to learn more about how Na+ ions conduct through solids and help develop new sodium batteries based upon better solid electrolytes. TECHNICAL DETAILSNa+ ions doped into a glass former can have very high conductivities when the chemistry is optimized. A rare coincidence of high ionic conductivity and improved physical and electrochemical properties of glassy solid electrolytes can be obtained by mixing two glass formers, B and P, for example, at a constant fraction of Na+. Such optimized mixed glass former glassy solid electrolytes based upon earth abundant Na may be candidates from which next generation cheaper, safer, and more efficient large grid-scale batteries can be made. While the Na B P O mixed glass former system exhibits a positive effect, new research has also discovered systems that show never before seen negative effects. This dual behavior of the effects is also observed in sulfide glasses. Here, B additions to a Na P S glass exponentially increase the ionic conductivity, whereas Ge additions to the same glass decrease its ionic conductivity. While progress has been made in understanding ionic conduction in solid electrolytes, significant knowledge gaps still exist. In undertaking this research, two doctoral graduate students and one undergraduate student will prepare and characterize new mixed glass former glasses that exhibit these opposite mixed glass former effects. Through this research, they will develop advanced laboratory-based research skills in materials science, glass research, and solid state electrochemistry. They will also develop computational skills and knowledge through an international collaboration with a leading glass theory and simulation research group in Germany where they will spend a 10-week summer research experience learning molecular dynamics and reverse Monte Carlo simulation techniques.
非技术描述太阳是一种巨大的未开发能源,具有昼夜循环的模式。因此,如果能解决安全、高成本和低效率的问题,就需要储能系统,而电池是正在考虑的很有前途的技术。考虑到所需的储能系统的规模,非常低的成本和丰富的地球资源的钠电池正在积极地研究。然而,今天的钠电池必须在300摄氏度下运行,因为电池隔板是一种固体电解液,具有低的Na+离子导电性,这导致这种电池效率低下、不安全和昂贵。由于这些原因,更好地了解Na+离子在固态中的运动是很重要的,这样才能开发出新的更好的导电固体电解质。在这个项目中,正在研究新的玻璃固体电解质,这种固体电解质可以非常便宜地制造出来,具有高的Na+离子电导率。具体地说,马丁的团队正在研究基于两种网络形成者(例如硅、硼或锗)的新三元玻璃,这两种网络形成者形成了高度交联的化学键排列。这些特殊的玻璃之所以被研究,是因为人们已经发现,在两种玻璃的某些组合中,Na+离子的导电性显著增加,而在其他组合中,Na+离子的运动显着减少。通过研究这两种不同的体系及其相反的行为,将有可能更多地了解Na+离子如何在固体中传导,并有助于开发基于更好的固体电解液的新型钠电池。技术上的DETAILSNa+离子掺杂到玻璃成型机中,在化学优化时可以具有非常高的导电性。例如,通过混合两种玻璃成形剂B和P,在恒定的Na+含量下,可以获得罕见的高离子导电性和改善的玻璃固体电解质的物理和电化学性质。这种基于地球富钠的优化混合玻璃前玻璃固体电解液可能是制造下一代更便宜、更安全、更高效的大型电网电池的候选材料。虽然Na B P O混合玻璃前驱体系统显示出积极的影响,但新的研究也发现了一些以前从未见过的负面影响。这种效应的双重行为也在硫化物玻璃中观察到。在Na P S玻璃中,B的添加使其离子电导率呈指数增加,而Ge的添加使其离子电导率降低。虽然在了解固体电解质中的离子传导方面已经取得了进展,但仍然存在着重大的知识空白。在进行这项研究时,两名博士研究生和一名本科生将准备并表征新的混合玻璃前玻璃,这种玻璃表现出这些相反的混合玻璃前玻璃效果。通过这项研究,他们将在材料科学、玻璃研究和固态电化学方面发展先进的实验室研究技能。他们还将通过与德国一家领先的玻璃理论和模拟研究小组的国际合作,发展计算技能和知识,在那里他们将花10周的夏季研究经验学习分子动力学和逆向蒙特卡罗模拟技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Martin其他文献
The policy and politics of free swimming
自由游泳的政策和政治
- DOI:
10.1080/19406940.2012.656689 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
N. Bolton;Steve Martin - 通讯作者:
Steve Martin
Long-term effects of multiple concussions on prefrontal cortex oxygenation during repeated squat-stands in retired contact sport athletes
多次脑震荡对退役接触运动运动员反复深蹲站立过程中前额皮质氧合的长期影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Luke W. Sirant;Jyotpal Singh;Steve Martin;C. Gaul;L. Stuart;D. Candow;Cameron S. Mang;J. Neary - 通讯作者:
J. Neary
Structure and properties of glasses in the MI + M<sub>2</sub>S + (0.1Ga<sub>2</sub>S<sub>3</sub> + 0.9GeS<sub>2</sub>), M = Li, Na, K and Cs, system
- DOI:
10.1016/j.jnoncrysol.2007.11.006 - 发表时间:
2008-04-15 - 期刊:
- 影响因子:
- 作者:
Wenlong Yao;Kyle Berg;Steve Martin - 通讯作者:
Steve Martin
A Theoretical Framework for Facilitating Methodological Choice
- DOI:
10.1023/a:1022952114289 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Steve Clarke;Brian Lehaney;Steve Martin - 通讯作者:
Steve Martin
Not) Recognising Famous Gaits
不)识别著名的步态
- DOI:
- 发表时间:
1977 - 期刊:
- 影响因子:0
- 作者:
M. Kleiner;B. Damon;Woody Allen;Sylvester Stallone;John Travolta;Robert De Niro;Jack Nicholson;Michael Caine;J. Wayne;Charlie Chaplin;Clint Eastwood;Steve Martin;R. Redford - 通讯作者:
R. Redford
Steve Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Martin', 18)}}的其他基金
EAGER: New Lithium Oxy-ThioBorate Solid State Electrolytes
EAGER:新型氧硫代硼酸锂固态电解质
- 批准号:
2234046 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Multi-Functional Wide-Wavelength-Range Fourier Transform Infrared Spectrometer for Multi-Materials Characterization
MRI:购买先进的多功能宽波长范围傅里叶变换红外光谱仪,用于多种材料表征
- 批准号:
2117445 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Synthesis, Structures, and Properties of New Mixed Oxy-Sulfide-Nitride Glassy Solid Electrolytes
新型混合氧-硫化物-氮化物玻璃态固体电解质的合成、结构和性能
- 批准号:
1936913 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
SusChEM: Ultra-High Li+ Ion Conductivity Chemically Stable Mechanically Strong Mixed Oxy-Sulfide Solid Electrolytes
SusChEM:超高锂离子电导率、化学稳定、机械强度高的混合硫氧化物固体电解质
- 批准号:
1438223 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
REU Site: Materials Education and Research on Far-From-Equilibrium Materials, Structures, Properties, and Processes
REU 网站:远离平衡材料、结构、性能和过程的材料教育和研究
- 批准号:
0755231 - 财政年份:2008
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Materials World Network: An International Collaborative Educational and Research Program in the Study of Mixed Glass Former Phenomena in Materials
材料世界网络:研究材料中混合玻璃前体现象的国际合作教育和研究计划
- 批准号:
0710564 - 财政年份:2007
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Acquisition of a Comprehensive High Temperature and High Purity Glove Box Materials Processing Facility for Education and Research
收购用于教育和研究的综合高温高纯度手套箱材料加工设施
- 批准号:
0315685 - 财政年份:2003
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Acquisition of a Comprehensive Multi-Wavelength Laser Raman System for Materials Education and Research
采购用于材料教育和研究的综合多波长激光拉曼系统
- 批准号:
0216830 - 财政年份:2002
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Dynamics and Structure in Complex Disordered FIC Electolytes: Is There a Maximum Ionic Conductivity in the Solid State?
复杂无序 FIC 电解质的动力学和结构:固态中是否存在最大离子电导率?
- 批准号:
9972466 - 财政年份:1999
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Acquisition of a Comprehensive, Dynamic Thermal Analysis System
采购综合动态热分析系统
- 批准号:
9625861 - 财政年份:1996
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
相似海外基金
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Discovery Projects
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
- 批准号:
24K17352 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
- 批准号:
10103109 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
EU-Funded
Doctoral Dissertation Research: Adaptation to environmental extremes in a great ape
博士论文研究:类人猿对极端环境的适应
- 批准号:
2341172 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Designing multi-knowledge protocols to transform transboundary policies for hydroclimatic extremes(DEMO TAPE)
设计多知识协议以转变极端水文气候的跨境政策(DEMO TAPE)
- 批准号:
EP/Y036905/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Rare Event Simulation: Protecting vital infrastructure from flood extremes
罕见事件模拟:保护重要基础设施免受极端洪水影响
- 批准号:
DP240101365 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Discovery Projects
Interrogating the extremes of skeletal muscle plasticity in vertebrates
探究脊椎动物骨骼肌可塑性的极限
- 批准号:
DP240102721 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Discovery Projects
Co-developed Environmental Solutions to Mitigate the Impact of Temperature Extremes on the Health of Vulnerable Populations
共同开发环境解决方案,以减轻极端温度对弱势群体健康的影响
- 批准号:
NE/Y503241/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Future Rainfall and Flood Extremes (FURFLEX)
未来降雨量和极端洪水 (FURFLEX)
- 批准号:
NE/Z000076/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant
GEOBEx: Geostatistical Binary Models For Extremes
GEOBEx:极值地统计二元模型
- 批准号:
EP/Y031229/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant














{{item.name}}会员




