Nonlinear Phenomena in Fluid Dynamics and Related PDE's with Applications to Atmosphere/Ocean Science
流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
基本信息
- 批准号:9972865
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Majda9972865 The investigator continues studies of the theory andapplications of partial differential equations to problems inturbulence and atmosphere/ocean science. The project emphasizesproblems in atmosphere/ocean science involving four researchareas:1) Stratified Mixing, Instability and Turbulence;2) Novel Statistical Theories for Open Ocean Convection;3) Nonlinear Waves in Tropical Meteorology;4) Nonlinear Stochastic Modelling for Geophysical Flows.The approach to all of these issues involves a sophisticatedcombination of asymptotic analysis, numerical computation, andtheoretical mathematical analysis to gain insight into thesecomplex and important phenomena. Inherently nonlinear orstatistical methods are emphasized throughout. The project,especially in the latter three topics, stressesmulti-disciplinary collaboration and exchange of ideas betweenapplied mathematicians, atmospheric scientists, andoceanographers. Behaviors of the atmosphere and ocean are complex and notwell understood. The project involves using novel andsophisticated mathematical theories and techniques to improveour understanding of important features of the climate, suchas El Nino, and the poleward transport of heat in the NorthAtlantic. Such an understanding could lead to improvedpredictions of weather, climate, and environmental phenomena.The approach involves multi-disciplinary collaboration andexchange of ideas between applied mathematicians, atmosphericscientists, and oceanographers. The project is supported by theApplied Mathematics and Computational Mathematics programs in theDivision of Mathematical Sciences, by the Physical Oceanographyprogram in the Division of Ocean Sciences, and by the Large-ScaleDynamic Meteorology program in the Division of AtmosphericSciences.
研究人员继续研究偏微分方程在湍流和大气/海洋科学问题中的理论和应用。该项目强调大气/海洋科学中的问题,涉及四个研究领域:1)分层混合、不稳定和湍流;2)新的公海对流统计理论;3)热带气象中的非线性波;4)地球物理流动的非线性随机模拟。所有这些问题的方法都涉及到渐近分析、数值计算和理论数学分析的复杂组合,以深入了解这些复杂而重要的现象。自始至终都强调固有的非线性或统计学方法。该项目,特别是在后三个主题中,强调应用数学家、大气科学家和海洋学家之间的多学科合作和思想交流。大气和海洋的行为是复杂的,人们对此知之甚少。该项目涉及使用新颖和复杂的数学理论和技术来提高我们对气候的重要特征的理解,例如厄尔尼诺现象和北大西洋向极地输送的热量。这样的理解可以改善对天气、气候和环境现象的预测。这种方法涉及应用数学家、大气科学家和海洋学家之间的多学科合作和思想交流。该项目得到了数学科学部的应用数学和计算数学计划、海洋科学部的物理海洋学计划和大气科学部的大尺度动力气象计划的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Majda其他文献
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Andrew Majda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Majda', 18)}}的其他基金
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
- 批准号:
1025468 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Systematic Mathematical Strategies for Multi-Scale Stochastic Modeling and Uncertainty in Atmosphere/Ocean Science
大气/海洋科学中多尺度随机建模和不确定性的系统数学策略
- 批准号:
0456713 - 财政年份:2005
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: The Weak Temperature Gradient Equations for Tropical Atmosphere Dynamics
合作研究:热带大气动力学的弱温度梯度方程
- 批准号:
0139918 - 财政年份:2002
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CMG Research: Emerging Mathematical Strategies for Stochastic Modeling and Predictability to Climate Variability
CMG 研究:随机建模和气候变化可预测性的新兴数学策略
- 批准号:
0222133 - 财政年份:2002
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Acquisition of a Clustered Workstation Computing Environment for Advancing Research and Education in the Atmospheric and Oceanic Sciences using General Circulation Models
获取集群工作站计算环境,以利用大气环流模型推进大气和海洋科学的研究和教育
- 批准号:
0079196 - 财政年份:2000
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamics and Related P.D.E.'s with Applications to Atmosphere/Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9625795 - 财政年份:1996
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9596102 - 财政年份:1995
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9301094 - 财政年份:1993
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s Theory, Asymptotics and Numerical Computation
数学科学:流体动力学中的非线性现象及相关的偏微分方程理论、渐近学和数值计算
- 批准号:
9001805 - 财政年份:1990
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Partial Differential Equations ofFluid Dynamics and their Numerical Approximation
数学科学:流体动力学偏微分方程及其数值逼近
- 批准号:
8702864 - 财政年份:1987
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似海外基金
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
- 批准号:
371637-2009 - 财政年份:2013
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
- 批准号:
371637-2009 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
- 批准号:
371637-2009 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
- 批准号:
371637-2009 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
- 批准号:
371637-2009 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
RUI: Granular Materials, Fluid Mixing, and Related Nonlinear Phenomena
RUI:颗粒材料、流体混合和相关非线性现象
- 批准号:
0072203 - 财政年份:2000
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
RUI: Granular Friction, Fluid Mixing and Related Nonlinear Phenomena
RUI:颗粒摩擦、流体混合及相关非线性现象
- 批准号:
9704301 - 财政年份:1997
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamics and Related P.D.E.'s with Applications to Atmosphere/Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9625795 - 财政年份:1996
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9596102 - 财政年份:1995
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9301094 - 财政年份:1993
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant