Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s Theory, Asymptotics and Numerical Computation
数学科学:流体动力学中的非线性现象及相关的偏微分方程理论、渐近学和数值计算
基本信息
- 批准号:9001805
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-07-01 至 1993-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a proposal to study mathematical models of physical phenomena arising in the flow of compressible and turbulent gases. In particular, the principal investigator will use analytical and numerical tools to investigate the instability of solutions of nonlinear systems of hyperbolic equations in three dimensions, the evolution of vortex filaments, the derivation of macroscopic transport quantities from turbulent flows using techniques of homogenization theory, and the properties of weak solutions of systems of equations from fluid dynamics and plasma physics. Various types of physical phenomena involve flows containing vortices. Everyday examples of vortices are tornadoes or the bath water as it goes down the drain. Mathematicians study the properties of such vortex motions by constructing simplified sets of equations that have "vortex-like" solutions and then using analytical and numerical methods to predict how these solutions evolve in time. The principal investigator will examine models of vortex flows that arise in aerodynamics and plasma physics.
这是一个研究物理模型的建议, 在可压缩和湍流流动中出现的现象 气. 特别是,主要研究者将使用 分析和数值工具,以调查不稳定性, 三阶非线性双曲方程组的解 尺度,涡丝的演化, 湍流的宏观输运量, 均匀化理论的技术,以及弱 流体动力学和等离子体方程组的解 物理学 各种类型的物理现象都涉及包含 漩涡 每天都有龙卷风或 洗澡的水会流到下水道 数学家研究 通过构造简化的集合, 方程有“涡状”的解决方案,然后使用 分析和数值方法来预测这些解决方案 在时间中进化。 首席研究员将检查模型 在空气动力学和等离子体物理学中出现的涡流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Majda其他文献
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Andrew Majda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Majda', 18)}}的其他基金
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
- 批准号:
1025468 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Systematic Mathematical Strategies for Multi-Scale Stochastic Modeling and Uncertainty in Atmosphere/Ocean Science
大气/海洋科学中多尺度随机建模和不确定性的系统数学策略
- 批准号:
0456713 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: The Weak Temperature Gradient Equations for Tropical Atmosphere Dynamics
合作研究:热带大气动力学的弱温度梯度方程
- 批准号:
0139918 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CMG Research: Emerging Mathematical Strategies for Stochastic Modeling and Predictability to Climate Variability
CMG 研究:随机建模和气候变化可预测性的新兴数学策略
- 批准号:
0222133 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Acquisition of a Clustered Workstation Computing Environment for Advancing Research and Education in the Atmospheric and Oceanic Sciences using General Circulation Models
获取集群工作站计算环境,以利用大气环流模型推进大气和海洋科学的研究和教育
- 批准号:
0079196 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Nonlinear Phenomena in Fluid Dynamics and Related PDE's with Applications to Atmosphere/Ocean Science
流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9972865 - 财政年份:1999
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamics and Related P.D.E.'s with Applications to Atmosphere/Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9625795 - 财政年份:1996
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9596102 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9301094 - 财政年份:1993
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Partial Differential Equations ofFluid Dynamics and their Numerical Approximation
数学科学:流体动力学偏微分方程及其数值逼近
- 批准号:
8702864 - 财政年份:1987
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
- 批准号:
0938266 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
- 批准号:
0440945 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
- 批准号:
0122208 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
- 批准号:
9817525 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
- 批准号:
9704861 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
- 批准号:
9703530 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9796164 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant














{{item.name}}会员




