Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena

分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题

基本信息

  • 批准号:
    371637-2009
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

The subject of nonlinear Partial Differential Equations has experienced a striking evolution last two decades, expanding towards other areas of Mathematics, for example Analysis, Geometry, Combinatorics etc.
非线性偏微分方程的主题在过去二十年中经历了惊人的发展,扩展到数学的其他领域,例如分析,几何,组合等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim, Slim其他文献

A Derivation of the Magnetohydrodynamic System from Navier-Stokes-Maxwell Systems
On singularity formation for the two-dimensional unsteady Prandtl system around the axis
绕轴二维非定常普朗特系统奇点形成
Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation
  • DOI:
    10.1016/j.jde.2021.03.037
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ibrahim, Slim;Lin, Quyuan;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.
Finite-time singularity formation for an active scalar equation
主动标量方程的有限时间奇点形成
  • DOI:
    10.1088/1361-6544/ac0231
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Elgindi, Tarek;Ibrahim, Slim;Shen, Shengyi
  • 通讯作者:
    Shen, Shengyi
Finite-Time Blowup for the Inviscid Primitive Equations of Oceanic and Atmospheric Dynamics
  • DOI:
    10.1007/s00220-015-2365-1
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cao, Chongsheng;Ibrahim, Slim;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.

Ibrahim, Slim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim, Slim', 18)}}的其他基金

Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大型机械结构非线性特性的实验辨识和物理仿真
  • 批准号:
    50405043
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
半导体中激子的量子非线性光学的研究
  • 批准号:
    10474025
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
  • 批准号:
    70471078
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evolution equations with the coexistence of fractional derivatives and nonlinear structures -perturbation theory and asymptotic analysis-
分数阶导数与非线性结构并存的演化方程-微扰理论与渐近分析-
  • 批准号:
    21K18581
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
  • 批准号:
    2054689
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Quantitative analysis for nonlinear evolution equations of diffusion type
扩散型非线性演化方程的定量分析
  • 批准号:
    21KK0044
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
  • 批准号:
    251124-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
  • 批准号:
    251124-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Evolution Equations and Quasi-Variational Analysis
非线性演化方程和拟变分分析
  • 批准号:
    26400162
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
  • 批准号:
    251124-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
  • 批准号:
    251124-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
  • 批准号:
    251124-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了