Systematic Mathematical Strategies for Multi-Scale Stochastic Modeling and Uncertainty in Atmosphere/Ocean Science
大气/海洋科学中多尺度随机建模和不确定性的系统数学策略
基本信息
- 批准号:0456713
- 负责人:
- 金额:$ 93.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the grand challenges of contemporary science is a comprehensive predictive model for the atmosphere and coupled climate system. This is one of the most difficult multi-scale problems in science today because there is an incredible range of strongly interacting anisotropic nonlinear processes over many spatio-temporal scales; contemporary comprehensive computer models, GCM's, are currently incapable of adequately resolving or parametrizing many of these interactions on time scales appropriate for seasonal prediction as well as climate change projections. Thus, the multi-scale problems in atmosphere/ocean dynamics serve as important prototypes for developing new systematic multi-scale strategies which are valuable in other scientific disciplines ranging from nanotechnology to macro-molecular dynamics to protein folding, etc. The societal impacts for these efforts are also large; it has been estimated recently that a one-month increase in lead time for El Nino prediction would save $100 billion worldwide. Basic questions which drive climate research are the prediction of the weather from 1 to 14 days, the prediction of climate variations on seasonal to yearly time scales, and finally, climate-change projections on decadal and centennial time scales as well as quantifying the uncertainty associated with these predictions. One of the striking recent observational discoveries is the profound impact of tropical variations on all of these problems. The primary influence of the tropics occurs through the interaction and organization of clouds into clusters, super-clusters, and planetary-scale dynamics, an inherently fully nonlinear multi-scale process. For climate change, water vapor is the most important greenhouse gas and the microphysical processes in clouds are a key mechanism for radiative feedback. In fact, only a 4% change in average cloudiness would overwhelm the effects of CO2 in climate change. Current evidence suggests that a few global planetary teleconnection patterns, such as the Pacific North America Oscillation, often summarize the weather and climate impact of the tropics for the mid-latitude atmosphere. Since it will be impossible to run resolved coupled atmosphere/ocean comprehensive numerical models for climate change, reduced models involving these basic large scale patterns are of central importance. Majda proposes to continue work on some of the most important issues and stumbling blocks for medium-range climate forecasting through the tools of modern applied mathematics, centering around novel strategies for: 1) multi-scale interaction of clouds, convection, and planetary waves in the tropics; 2) stochastic modeling of unresolved features for both the atmosphere/ocean and for quantifying uncertainty and predictive capability in complex systems through information theory. This will lead to new strategies for deterministic and stochastic parametrization of unresolved scales for the atmosphere and ocean, potentially significant low-order dynamic stochastic models for these processes, and more rigorous quantification of uncertainty in weather and climate-change predictions. Such research often has additional potential benefit for other disciplines in science and engineering; also novel issues for applied PDE's and numerical analysis are expected to arise.
当代科学的重大挑战之一是为大气和耦合气候系统建立一个全面的预测模型。 这是当今科学中最困难的多尺度问题之一,因为在许多时空尺度上存在着令人难以置信的强烈相互作用的各向异性非线性过程;当代综合计算机模型(GCM)目前无法在适合季节预测和气候变化预测的时间尺度上充分解决或参数化许多这些相互作用。 因此,大气/海洋动力学中的多尺度问题是发展新的系统性多尺度战略的重要原型,这在从纳米技术到大分子动力学到蛋白质折叠等其他科学学科中是有价值的。据最近估计,厄尔尼诺现象预测提前一个月将在全世界节省1000亿美元。 推动气候研究的基本问题是预测1至14天的天气,预测季节到年度时间尺度上的气候变化,最后是十年和百年时间尺度上的气候变化预测以及量化与这些预测相关的不确定性。 最近的一个引人注目的观测发现是热带变化对所有这些问题的深刻影响。 热带的主要影响是通过云的相互作用和组织成团,超级团和行星尺度动力学发生的,这是一个内在的完全非线性的多尺度过程。 对于气候变化而言,水汽是最重要的温室气体,而云中的微物理过程是辐射反馈的关键机制。 事实上,平均云量只有4%的变化会压倒二氧化碳在气候变化中的影响。 目前的证据表明,一些全球行星遥相关模式,如太平洋北美涛动,往往总结了热带对中纬度大气的天气和气候影响。 由于不可能运行解析的大气/海洋耦合气候变化综合数值模式,因此涉及这些基本大尺度模式的简化模式至关重要。 Majda建议通过现代应用数学的工具继续研究中期气候预测的一些最重要的问题和障碍,围绕以下新策略:1)热带地区云,对流和行星波的多尺度相互作用; 2)对大气和大气中的未分辨特征进行随机建模,海洋和量化的不确定性和预测能力在复杂系统中通过信息理论。 这将导致确定性和随机参数化的大气和海洋的未解决的尺度,这些过程的潜在重要的低阶动态随机模型,以及更严格的量化天气和气候变化预测的不确定性的新战略。 这样的研究往往有其他学科在科学和工程额外的潜在利益,也应用偏微分方程和数值分析的新问题预计会出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Majda其他文献
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Andrew Majda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Majda', 18)}}的其他基金
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
- 批准号:
1025468 - 财政年份:2010
- 资助金额:
$ 93.17万 - 项目类别:
Standard Grant
Collaborative Research: The Weak Temperature Gradient Equations for Tropical Atmosphere Dynamics
合作研究:热带大气动力学的弱温度梯度方程
- 批准号:
0139918 - 财政年份:2002
- 资助金额:
$ 93.17万 - 项目类别:
Standard Grant
CMG Research: Emerging Mathematical Strategies for Stochastic Modeling and Predictability to Climate Variability
CMG 研究:随机建模和气候变化可预测性的新兴数学策略
- 批准号:
0222133 - 财政年份:2002
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Acquisition of a Clustered Workstation Computing Environment for Advancing Research and Education in the Atmospheric and Oceanic Sciences using General Circulation Models
获取集群工作站计算环境,以利用大气环流模型推进大气和海洋科学的研究和教育
- 批准号:
0079196 - 财政年份:2000
- 资助金额:
$ 93.17万 - 项目类别:
Standard Grant
Nonlinear Phenomena in Fluid Dynamics and Related PDE's with Applications to Atmosphere/Ocean Science
流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9972865 - 财政年份:1999
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamics and Related P.D.E.'s with Applications to Atmosphere/Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9625795 - 财政年份:1996
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9596102 - 财政年份:1995
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9301094 - 财政年份:1993
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s Theory, Asymptotics and Numerical Computation
数学科学:流体动力学中的非线性现象及相关的偏微分方程理论、渐近学和数值计算
- 批准号:
9001805 - 财政年份:1990
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Partial Differential Equations ofFluid Dynamics and their Numerical Approximation
数学科学:流体动力学偏微分方程及其数值逼近
- 批准号:
8702864 - 财政年份:1987
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
相似海外基金
Equilibrium with Randomized Strategies in Learning Theory and Mathematical Finance
学习理论和数学金融中随机策略的均衡
- 批准号:
2400447 - 财政年份:2023
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Optimizing Mpox surveillance strategies and preventing epidemic resurgence: a three-province mathematical modeling study
优化MPox监测策略并防止流行复发:三省数学模型研究
- 批准号:
481133 - 财政年份:2023
- 资助金额:
$ 93.17万 - 项目类别:
Operating Grants
CAREER: Grasping Understandings of Students Mathematical and Perceptual Strategies Using Real-Time Teacher Orchestration Tools
职业:使用实时教师编排工具掌握学生数学和感知策略的理解
- 批准号:
2142984 - 财政年份:2022
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Objectives matter: A mathematical modelling framework to identify optimal control strategies for future infectious disease outbreaks
目标很重要:数学模型框架可确定未来传染病爆发的最佳控制策略
- 批准号:
2737654 - 财政年份:2022
- 资助金额:
$ 93.17万 - 项目类别:
Studentship
Equilibrium with Randomized Strategies in Learning Theory and Mathematical Finance
学习理论和数学金融中随机策略的均衡
- 批准号:
2007826 - 财政年份:2020
- 资助金额:
$ 93.17万 - 项目类别:
Continuing Grant
Research on teaching material development strategies to practice the activities of mathematical sophistication
数学精细化实践活动教材开发策略研究
- 批准号:
20K02915 - 财政年份:2020
- 资助金额:
$ 93.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Modelling of Insecticide Resistance Management Strategies for the Control of Vector-Borne Diseases
控制媒介传播疾病的杀虫剂抗性管理策略的数学模型
- 批准号:
2269329 - 财政年份:2019
- 资助金额:
$ 93.17万 - 项目类别:
Studentship
New solvers and strategies based on mathematical analyses to enhance parallel performance on massive computers
基于数学分析的新求解器和策略可增强大型计算机的并行性能
- 批准号:
19K12008 - 财政年份:2019
- 资助金额:
$ 93.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on mathematical expressions and numerical methods of optimal hedging strategies for stochastic volatility models
随机波动率模型最优对冲策略的数学表达式和数值方法研究
- 批准号:
18K03422 - 财政年份:2018
- 资助金额:
$ 93.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical modelling of ecological systems to develop strategies for sustainable management of common-pool resources
生态系统数学建模,制定公共池资源可持续管理战略
- 批准号:
529183-2018 - 财政年份:2018
- 资助金额:
$ 93.17万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's