A Qualitative and Quantitative Study of Self-Adjoint and Non-Self-Adjoint Sturm-Liouville Problems

自共和非自共Sturm-Liouville问题的定性和定量研究

基本信息

  • 批准号:
    9973108
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-15 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

ZettlTechnical description. In a series of papers over the last five years or so, the three authors of this proposal, together with a number of collaborators, embarked on a systematic study of the dependence of the spectrum of self-adjoint Sturm-Liouville problems on the problem. This project is a naturalcontinuation of the above work. It is planned to enlarge the class of self-adjointproblems covered (e.g. by including the so called "left-definite" problems) and,especially, extend the above work to the non-self-adjoint case. The latter case isformidable: there is no general theory that can be compared with the well developedtheory for the self-adjoint case. A new approach introduced by the authors forthe self-adjoint case, using tools from algebraic geometry, has yielded considerableinsight for this case and is expected to do so also for the non-self-adjoint case.General description. Sturm-Liouville problems have a celebrated history dating backto the seminal papers of Sturm and Liouville in 1836-37. Thousands of papers have been written on these problems by mathematicians and by scientists, and engineers.Yet the field is still intensely active today with dozens of papers published every year. These problems have a wide range of applications in pure mathematics, applied mathematics, quantum mechanics, the sciences and engineering. For example, they can be used to study the spectrum of the hydrogen atom, eddies in the atmosphere, neutron transport, etc. etc. The main purpose of this project is to study, both qualitatively and quantitatively, some major and difficult classes of such problems about which little is known.
Zettl技术说明。在过去五年左右的一系列论文中,这一建议的三位作者与一些合作者一起,开始系统地研究自伴Sturm-Liouville问题的谱对问题的依赖性。本项目是上述工作的自然延续。它计划扩大类self-adjointproblems覆盖(例如,通过包括所谓的“左定”问题),特别是,上述工作扩展到非自伴的情况下。后一种情况是可怕的:没有一般的理论可以与发展良好的自伴理论相比较。一种新的方法介绍了作者forthe自伴的情况下,使用工具从代数几何,产生了considerableinsight为这种情况下,预计这样做也为非自伴的情况下。Sturm-Liouville问题有一个著名的历史可以追溯到Sturm和Liouville在1836-37年的开创性论文。数学家、科学家和工程师们已经就这些问题发表了数千篇论文,但这个领域至今仍十分活跃,每年都有数十篇论文发表。这些问题在纯数学、应用数学、量子力学、科学和工程中有着广泛的应用。例如,它们可以用来研究氢原子的光谱,在大气中的涡流,中子输运等,等这个项目的主要目的是研究,定性和定量,一些主要和困难的类这样的问题知之甚少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Zettl其他文献

INEQUALITIES AMONG EIGENVALUES OF STURM LIOUVILLE EQUATIONS WITH PERIODIC COEFFICIENTS
具有周期系数的Sturm Liouville方程特征值不等式
Erratum to Spectral exactness and spectral inclusion for singular left definite Sturm-Liouvelle problems
  • DOI:
    10.1007/bf03323022
  • 发表时间:
    2013-04-24
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Marco Marietta;Anton Zettl
  • 通讯作者:
    Anton Zettl
Construction of Regular and Singular Greens Functions
常规绿化和奇异绿化建设
Fourth order canonical forms of singular self-adjoint boundary conditions
奇异自伴边界条件的四阶正则形式
  • DOI:
    10.1016/j.laa.2012.03.022
  • 发表时间:
    2012-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Xiaoling Hao;Jiong Sun;Anton Zettl
  • 通讯作者:
    Anton Zettl
On the limit point classification of second order differential equations
  • DOI:
    10.1007/bf01179735
  • 发表时间:
    1973-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    James S. W. Wong;Anton Zettl
  • 通讯作者:
    Anton Zettl

Anton Zettl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Zettl', 18)}}的其他基金

Mathematical Sciences: On the Numerical Computation of the Spectrum of Singular Sturm-Liouville Problems
数学科学:奇异斯特姆-刘维尔问题谱的数值计算
  • 批准号:
    9106470
  • 财政年份:
    1991
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Differential Operators and Norm Inequalities
微分算子和范数不等式
  • 批准号:
    7827565
  • 财政年份:
    1979
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
The Deficiency Index Problem For Singular Ordinary Differential Operators and Powers
奇异常微分算子和幂的不足指数问题
  • 批准号:
    7606623
  • 财政年份:
    1976
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Powers and Factors of Ordinary Linear Differential Operators
普通线性微分算子的幂和因数
  • 批准号:
    7406373
  • 财政年份:
    1900
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似海外基金

Geographical study on quantitative and qualitative changes in daily life after COVID-19 pandemic
COVID-19大流行后日常生活量变和质变的地理学研究
  • 批准号:
    22KJ2828
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Qualitative and quantitative study on childhood financial socializatioin in a critical perspective for financial education practices
从金融教育实践的批判角度对儿童金融社会化进行定性和定量研究
  • 批准号:
    23K02180
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Descriptive Study on the Gradualness of Language Change: Integrating Quantitative and Qualitative Approaches
语言变化渐进性的描述性研究:定量和定性相结合的方法
  • 批准号:
    23K12200
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A qualitative and quantitative study of Indigenous content in curriculum
课程中土著内容的定性和定量研究
  • 批准号:
    IN210100038
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Indigenous
A study on the effect of quantitative and qualitative monetary easing on stock market
定量和定性货币宽松对股市的影响研究
  • 批准号:
    20K01786
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Influence of mental health disorders and their management on adult functioning outcomes among emerging adults with a history of out-of-home care: a quantitative and qualitative study.
心理健康障碍及其管理对有户外护理史的新兴成年人的成人功能结果的影响:一项定量和定性研究。
  • 批准号:
    383384
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship Programs
A Sociological Study on the Contexts and Factors of Regional disparities of Social Care Placement between Local Governments: A Quantitative and Qualitative Comparative Analysis
地方政府间社会关怀安置地区差异的背景和因素的社会学研究:定量和定性比较分析
  • 批准号:
    17K04227
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A qualitative and quantitative study on factors that positively contribute to long-term employment of nursery school teachers
幼儿园教师长期就业积极影响因素的定性与定量研究
  • 批准号:
    17K13995
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Quantitative and qualitative study on the effect of motivation in unfamiliar face identification
陌生面孔识别中动机影响的定量和定性研究
  • 批准号:
    17K04491
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measures study of forest experience activities for Persons with Disabilities depends on quantitative and qualitative approach.
残疾人森林体验活动的措施研究依赖于定量和定性的方法。
  • 批准号:
    16K07787
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了