Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
基本信息
- 批准号:2246850
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The work will study important properties of solutions to stochastic partial differential equations (SPDEs). These equations have applications in many fields, ranging from physics and chemistry to biology and financial markets. Key examples include the stochastic heat equation (SHE), the parabolic Anderson model (PAM), and the Kardar-Parisi-Zhang (KPZ) equation. These equations and their variants model crucial phenomena such as the spread of forest fires, smoke dispersal, growth of tumor tissues, superconductivity, and the formation of the universe's stratified structure and magnetic fields of planets or stars. This project will deepen our understanding of these phenomena by establishing essential properties of solutions, such as existence and uniqueness, moment asymptotics, positivity and support of solutions, existence and smoothness of probability density. Active efforts will be made to encourage participation by students from underrepresented groups in this research program, fostering an inclusive and diverse research environment. The investigator also participates in outreach programs for pre-college students. SPDEs depend on many technical parameters and conditions, including initial conditions, noise structures, conditions on the diffusion coefficients, geometric and analytic properties of the spatial domain and the corresponding boundary conditions, differential operators, among others. This project will focus on: (1) Studying SHE/PAM with rough initial conditions; (2) Investigating SHE in the sublinear growth regime, possibly with non-Lipschitz diffusion coefficients; and (3) Exploring the boundary effects to SHE/PAM. These three objectives will be implemented via six concrete projects. This project is jointly funded by the DMS Probability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本文将研究随机偏微分方程解的重要性质。这些方程在许多领域都有应用,从物理和化学到生物学和金融市场。关键的例子包括随机热方程(SHE),抛物线安德森模型(PAM),和Kardar-Parisi-Zhang(KPZ)方程。这些方程及其变形模型的关键现象,如森林火灾的蔓延,烟雾扩散,肿瘤组织的生长,超导性,以及宇宙的分层结构和行星或恒星的磁场的形成。本项目将通过建立解的基本性质,如解的存在性和唯一性、矩渐近性、解的正性和支撑性、概率密度的存在性和光滑性,加深我们对这些现象的理解。将积极努力鼓励来自代表性不足群体的学生参与本研究计划,营造包容性和多样性的研究环境。调查员还参加了大学预科学生的外展计划。SPDE依赖于许多技术参数和条件,包括初始条件、噪声结构、扩散系数的条件、空间域的几何和分析性质以及相应的边界条件、微分算子等。该项目将侧重于:(1)在粗糙的初始条件下研究SHE/PAM;(2)在亚线性增长区研究SHE,可能具有非Lipschitz扩散系数;(3)探索边界效应对SHE/PAM的影响。这三个目标将通过六个具体项目来实现。该项目由DMS概率计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Chen其他文献
Moments, Intermittency, and Growth Indices for Nonlinear Stochastic PDE"s with Rough Initial Conditions
具有粗糙初始条件的非线性随机偏微分方程的矩、间歇性和增长指数
- DOI:
10.5075/epfl-thesis-5712 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Le Chen - 通讯作者:
Le Chen
Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term
无漂移项非线性随机热方程的不变测度
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Le Chen;N. Eisenberg - 通讯作者:
N. Eisenberg
Low bone mass is associated with carotid calcification plaque in Chinese postmenopausal women: the Chongqing osteoporosis study
中国绝经后妇女低骨量与颈动脉钙化斑块相关:重庆骨质疏松症研究
- DOI:
10.1080/13697137.2019.1671818 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.8
- 作者:
Dong Liu;Le Chen;Shuyang Dong;Hai Yang;Ling Li;Juan Liu;Huadong Zhou;Rui Zhou - 通讯作者:
Rui Zhou
Creating a Dataset for High-Performance Computing Code Translation: A Bridge Between HPC Fortran and C++
创建高性能计算代码翻译数据集:HPC Fortran 和 C 之间的桥梁
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bin Lei;Caiwen Ding;Le Chen;Pei;C. Liao - 通讯作者:
C. Liao
Impact of Population Density on Spatial Differences in the Economic Growth of Urban Agglomerations: The Case of Guanzhong Plain Urban Agglomeration, China
人口密度对城市群经济增长空间差异的影响——以中国关中平原城市群为例
- DOI:
10.3390/su151914601 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Le Chen;Leshui Yu;Jiangbin Yin;Meijun Xi - 通讯作者:
Meijun Xi
Le Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Chen', 18)}}的其他基金
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
- 批准号:
2872613 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
- 批准号:
EP/W034220/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
- 批准号:
2884422 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Next generation particle filters for stochastic partial differential equations
用于随机偏微分方程的下一代粒子滤波器
- 批准号:
EP/W016125/1 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
- 批准号:
RGPIN-2018-04325 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Backward Stochastic Partial Differential Equations: Theory and Applications in Stochastic Control and Mathematical Finance
后向随机偏微分方程:随机控制和数学金融的理论与应用
- 批准号:
RGPIN-2018-04325 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




