Optimization Techniques in Response Surface Methodology for Quality Improvement
用于质量改进的响应面方法中的优化技术
基本信息
- 批准号:9988563
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9988563Del CastilloThe objective of this research is to develop new and efficient optimization techniques for use in Response Surface Methodology (RSM). RSM is a set of Statistical and optimization techniques aimed at improving the quality characteristics of a manufacturing process via the sequential application of designed experiments and model building techniques. Specific goals of this research include 1) the development of new statistical search methods under the presence of large sampling variability; 2) development of new algorithms for the global optimization of the type of quadratic programming problems frequently arising in RSM studies, including the case of multiple secondary responses. Methods will be studied for finding a confidence region for the best operational settings of a manufacturing process that is modeled using polynomial regression techniques. Finally, 3) a Rapid Response Surface Methodology will be developed that will allow for fast optimization of multiple response processes. The outcome of this research will be a new set of optimization techniques for industrial experimentation that will be well-received by Process and Quality Engineers who currently use existing RSM optimization techniques. This will be accomplished by taking into consideration the particular characteristics of experimental optimization in industrial practice, namely, its sequential nature, the existence of high sampling variability, the presence of multiple responses, and the need for rapid optimization in expensive processes. This latter will be of interest to capital-intensive manufacturers where the number of experiments required to qualify or optimize a process should be kept to a minimum. Collaboration with industrial researchers (Lucent Technologies and SmithKline Beecham) and with Penn State's Nanofabrication facility will provide a testbed for the techniques developed in this project. The manufacturing laboratories at the Leonhard building, the new home of the IE department at Penn State, will allow testing in more traditional manufacturing processes. Easy to use software will be developed that will facilitate technology transfer.
本研究的目的是为响应面法(RSM)开发新的高效优化技术。RSM是一套统计和优化技术,旨在通过设计实验和模型构建技术的顺序应用来提高制造过程的质量特征。本研究的具体目标包括:1)在存在大样本变异的情况下,开发新的统计搜索方法;2)针对RSM研究中经常出现的二次规划问题(包括多个二次响应的情况)的全局优化问题,开发了新的算法。方法将研究为使用多项式回归技术建模的制造过程的最佳操作设置找到置信区域。最后,3)将开发一种快速响应面方法,该方法将允许快速优化多个响应过程。这项研究的结果将是一套用于工业实验的新的优化技术,这将受到目前使用现有RSM优化技术的过程和质量工程师的欢迎。这将通过考虑工业实践中实验优化的特殊特征来实现,即,它的顺序性质,高采样可变性的存在,多重响应的存在,以及在昂贵过程中快速优化的需要。后者将对资本密集型制造商感兴趣,在这些制造商中,合格或优化工艺所需的实验数量应保持在最低限度。与工业研究人员(朗讯科技和SmithKline Beecham)以及宾夕法尼亚州立大学的纳米制造设施合作,将为该项目中开发的技术提供一个测试平台。宾夕法尼亚州立大学工业工程系的新家莱昂哈德大楼的制造实验室将允许在更传统的制造工艺中进行测试。将开发易于使用的软件,以促进技术转让。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique Del Castillo其他文献
D-optimal design of artifacts used in-machine software error compensation
使用机内软件误差补偿的工件的 D 优化设计
- DOI:
10.1080/00207540701673440 - 发表时间:
2009 - 期刊:
- 影响因子:9.2
- 作者:
Kun Tong;Enrique Del Castillo;T. M. Cavalier;E. Lehtihet;S. Joshi - 通讯作者:
S. Joshi
Run length distributions and economic design of $$\bar X$$ charts with unknown process variance
- DOI:
10.1007/bf02613907 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Enrique Del Castillo - 通讯作者:
Enrique Del Castillo
Run length analysis of Shewhart charts applied to drifting processes under an integrative SPC/EPC model
- DOI:
10.1007/s001840050041 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Rainer Göb;Enrique Del Castillo;Klaus Dräger - 通讯作者:
Klaus Dräger
Enrique Del Castillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique Del Castillo', 18)}}的其他基金
Deep Intrinsic Learning for On-line Process Control of Manufacturing Manifold Data
用于制造流形数据在线过程控制的深度内在学习
- 批准号:
2121625 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
High Dimensional Statistical Inference in Flexible Response Surface Models for Product Formulation
产品配方灵活响应面模型中的高维统计推断
- 批准号:
1634878 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
- 批准号:
1537987 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
On-line Profile-to-Profile Process Adjustment for Robust Parameter Design Scenarios
针对稳健参数设计方案的在线剖面到剖面工艺调整
- 批准号:
0825786 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Statistical Adjustment for Short-Run Manufacturing: Parametric Optimization, Robustness Analysis, and Ensemble Control Using Gibbs Sampling
短期制造的统计调整:参数优化、鲁棒性分析和使用吉布斯抽样的集成控制
- 批准号:
0200056 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Multivariate Quality Control of Semiconductor Manufacturing Processes via Adaptive Optimizing Controllers
职业:通过自适应优化控制器对半导体制造工艺进行多元质量控制
- 批准号:
9996031 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Multivariate Quality Control of Semiconductor Manufacturing Processes via Adaptive Optimizing Controllers
职业:通过自适应优化控制器对半导体制造工艺进行多元质量控制
- 批准号:
9623669 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
U.S. - Germany Cooperative Research: Integration of Statistical and Automatic Control Techniques for Economic Quality Control
美德合作研究:统计与自动控制技术的整合用于经济质量控制
- 批准号:
9513444 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
相似海外基金
Collaborative Research: SaTC: CORE: Small: ERADICATOR: Techniques for Laser Assisted Side-Channel Attack Monitor & Response
协作研究:SaTC:核心:小型:ERADICATOR:激光辅助侧信道攻击监控技术
- 批准号:
2150122 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: ERADICATOR: Techniques for Laser Assisted Side-Channel Attack Monitor & Response
协作研究:SaTC:核心:小型:ERADICATOR:激光辅助侧信道攻击监控技术
- 批准号:
2150123 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Response of peatland ecosystem functions to novel restoration techniques
泥炭地生态系统功能对新型恢复技术的响应
- 批准号:
RGPIN-2020-07098 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Hyperpolarized C-13 MRI Techniques to Monitor Radiation Therapy Response in Prostate Cancer Patients
超极化 C-13 MRI 技术监测前列腺癌患者的放射治疗反应
- 批准号:
10428647 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Hyperpolarized C-13 MRI Techniques to Monitor Radiation Therapy Response in Prostate Cancer Patients
超极化 C-13 MRI 技术监测前列腺癌患者的放射治疗反应
- 批准号:
10317805 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Hyperpolarized C-13 MRI Techniques to Monitor Radiation Therapy Response in Prostate Cancer Patients
超极化 C-13 MRI 技术监测前列腺癌患者的放射治疗反应
- 批准号:
10653171 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Response of peatland ecosystem functions to novel restoration techniques
泥炭地生态系统功能对新型恢复技术的响应
- 批准号:
RGPIN-2020-07098 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Response of peatland ecosystem functions to novel restoration techniques
泥炭地生态系统功能对新型恢复技术的响应
- 批准号:
RGPIN-2020-07098 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
- 批准号:
2027908 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
- 批准号:
2028004 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




