Deep Intrinsic Learning for On-line Process Control of Manufacturing Manifold Data
用于制造流形数据在线过程控制的深度内在学习
基本信息
- 批准号:2121625
- 负责人:
- 金额:$ 36.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will strengthen US industrial competitiveness by studying new methods for the control of the quality of manufactured products. Modern laser sensors in manufacturing plants can collect hundreds of thousands of measurements from the surface of discrete parts or process variables in chemical plants. How to best use these very large datasets to control the quality of parts is a difficult and open problem. The first part of this project will develop new machine learning and mathematical methods for quality control of the manufactured discrete parts based on 3-dimensional geometrical data obtained from laser scans that do not require lengthy preprocessing. The grant will then develop new methods for the identification of a subset of variables that best represent the larger set of process variables in a continuous process manufacturing facility, such that effective monitoring of the smaller set of variables can lead to overall best control of the plant, resulting in better products at lower cost. Open source software that implements the algorithms developed in this research will be made available, as well as educational activities that enhance the participation of underrepresented minorities at both graduate and undergraduate level.The first part of this research will consider discrete parts of a general free-form whose surface or volumetric scans constitute large manifold datasets of complex geometry. The research first aims at finding improved spectrum estimators of the Laplace-Beltrami (LB) operator using Finite Element Methods (FEM), in particular, solving a Helmholtz partial differential equation on the part manifold. The eigendecomposition of the LB operator will be used as part features to monitor in multivariate SPC schemes. A new Deep Functional Map approach, based on the LB operators of both part and its CAD model, will localize the defect on the surface of the part, providing a registration-free solution to the part localization problem. To find significant differences requires solution of a massive statistical Multiple Comparison problem which will be investigated. High dimensional continuous manufacturing processes whose in-control state lies on a lower dimensional manifold require extending the map from ambient space to embedding for the new observations collected sequentially in time, in such a way that it is possible to determine rapidly if they are in the on-control manifold or are significantly far from it. In the second part of this grant, this problem will be studied with two alternative approaches: a) a Laplacian Eigenmap that will be extended by solving a classical inverse problem via a Nystrom technique, and b) Deep Autoencoders, a type of neural network aimed at high dimensional data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将通过研究控制制造产品质量的新方法来加强美国工业的竞争力。制造工厂中的现代激光传感器可以从化工厂的离散部件或过程变量的表面收集数十万个测量值。如何最好地利用这些非常大的数据集来控制零件的质量是一个困难和开放的问题。该项目的第一部分将开发新的机器学习和数学方法,用于基于激光扫描获得的三维几何数据对制造的离散零件进行质量控制,这些数据不需要冗长的预处理。然后,该赠款将开发新的方法,用于识别最能代表连续过程制造设施中较大的过程变量集的变量子集,以便有效监控较小的变量集,从而实现对工厂的整体最佳控制,从而以较低的成本生产出更好的产品。开放源码软件,实现本研究中开发的算法将提供,以及教育活动,提高在研究生和本科生水平的代表性不足的少数民族的参与。本研究的第一部分将考虑一般自由形式的离散部分,其表面或体积扫描构成复杂几何形状的大流形数据集。本研究首先利用有限元方法(FEM),特别是求解部分流形上的Helmholtz偏微分方程,寻找改进的Laplace-Beltrami(LB)算子的谱估计。LB算子的本征分解将被用作多元SPC方案中的部分特征来监控。一种新的深度功能图方法,基于零件及其CAD模型的LB运算符,将定位零件表面上的缺陷,为零件定位问题提供免配准解决方案。要找到显着差异需要解决大量的统计多重比较问题,这将是调查。高维连续制造过程的控制状态位于一个较低的维流形上,需要从环境空间扩展映射到嵌入的新的观察收集顺序的时间,在这样一种方式,它是可能的,以快速确定,如果他们是在控制流形或显着远离它。在第二部分,本授权,这个问题将研究两种替代方法:a)Laplacian Eigenmap,将通过Nystrom技术解决经典逆问题来扩展;以及B)Deep Autoencoders,一种针对高维数据的神经网络。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique Del Castillo其他文献
D-optimal design of artifacts used in-machine software error compensation
使用机内软件误差补偿的工件的 D 优化设计
- DOI:
10.1080/00207540701673440 - 发表时间:
2009 - 期刊:
- 影响因子:9.2
- 作者:
Kun Tong;Enrique Del Castillo;T. M. Cavalier;E. Lehtihet;S. Joshi - 通讯作者:
S. Joshi
Run length distributions and economic design of $$\bar X$$ charts with unknown process variance
- DOI:
10.1007/bf02613907 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Enrique Del Castillo - 通讯作者:
Enrique Del Castillo
Run length analysis of Shewhart charts applied to drifting processes under an integrative SPC/EPC model
- DOI:
10.1007/s001840050041 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Rainer Göb;Enrique Del Castillo;Klaus Dräger - 通讯作者:
Klaus Dräger
Enrique Del Castillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique Del Castillo', 18)}}的其他基金
High Dimensional Statistical Inference in Flexible Response Surface Models for Product Formulation
产品配方灵活响应面模型中的高维统计推断
- 批准号:
1634878 - 财政年份:2016
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
- 批准号:
1537987 - 财政年份:2015
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
On-line Profile-to-Profile Process Adjustment for Robust Parameter Design Scenarios
针对稳健参数设计方案的在线剖面到剖面工艺调整
- 批准号:
0825786 - 财政年份:2008
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Statistical Adjustment for Short-Run Manufacturing: Parametric Optimization, Robustness Analysis, and Ensemble Control Using Gibbs Sampling
短期制造的统计调整:参数优化、鲁棒性分析和使用吉布斯抽样的集成控制
- 批准号:
0200056 - 财政年份:2002
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Optimization Techniques in Response Surface Methodology for Quality Improvement
用于质量改进的响应面方法中的优化技术
- 批准号:
9988563 - 财政年份:2000
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
CAREER: Multivariate Quality Control of Semiconductor Manufacturing Processes via Adaptive Optimizing Controllers
职业:通过自适应优化控制器对半导体制造工艺进行多元质量控制
- 批准号:
9996031 - 财政年份:1998
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
CAREER: Multivariate Quality Control of Semiconductor Manufacturing Processes via Adaptive Optimizing Controllers
职业:通过自适应优化控制器对半导体制造工艺进行多元质量控制
- 批准号:
9623669 - 财政年份:1996
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
U.S. - Germany Cooperative Research: Integration of Statistical and Automatic Control Techniques for Economic Quality Control
美德合作研究:统计与自动控制技术的整合用于经济质量控制
- 批准号:
9513444 - 财政年份:1996
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
The role of wake-associated protein kinase A transients in intrinsic plasticity and learning through aging
唤醒相关蛋白激酶 A 瞬变在内在可塑性和衰老学习中的作用
- 批准号:
10751540 - 财政年份:2023
- 资助金额:
$ 36.43万 - 项目类别:
Development of Reinfrocement Learning Algorithm and Intrinsic Rewards for Meta-models
强化学习算法的开发和元模型的内在奖励
- 批准号:
23K18476 - 财政年份:2023
- 资助金额:
$ 36.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Geoscience Behind Critical Infrastructure Careers; Unlocking the Intrinsic Value of Diverse Communities - a GEO-STEM Learning Ecosystem in Practice
关键基础设施职业背后的地球科学;
- 批准号:
2055024 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Enhancing motor skill learning by manipulating extrinsic and intrinsic components of the motor task
通过操纵运动任务的外在和内在组成部分来增强运动技能学习
- 批准号:
21K17789 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
III: Small: Integrated prediction of intrinsic disorder and disorder functions with modular multi-label deep learning
III:小:通过模块化多标签深度学习对内在无序和无序函数进行集成预测
- 批准号:
2125218 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
Standard Grant
Discovering intrinsic catalytic reaction mechanisms: using machine learning to 'crack' rate expressions
发现内在的催化反应机制:利用机器学习“破解”速率表达式
- 批准号:
2606002 - 财政年份:2021
- 资助金额:
$ 36.43万 - 项目类别:
Studentship
Intrinsic Motivation in Science Museums: Learning from and Broadening Participation of Visitors with Learning Disabilities
科学博物馆的内在动机:向有学习障碍的参观者学习并扩大他们的参与
- 批准号:
2005571 - 财政年份:2020
- 资助金额:
$ 36.43万 - 项目类别:
Continuing Grant
Intrinsic Motivation of World History Learning from Learners Viewpoints: From the Perspective of International Posture
学习者视角下世界史学习的内在动因:国际姿态的视角
- 批准号:
19K02878 - 财政年份:2019
- 资助金额:
$ 36.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning for Game World Generation using Intrinsic Motivation as an Objective Function.
使用内在动机作为目标函数的游戏世界生成机器学习。
- 批准号:
2119222 - 财政年份:2018
- 资助金额:
$ 36.43万 - 项目类别:
Studentship
Integration of Kullback-Leibler control and intrinsic rewards for reinforcement learning
Kullback-Leibler 控制和强化学习内在奖励的集成
- 批准号:
16K12504 - 财政年份:2016
- 资助金额:
$ 36.43万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research