Galois Representations and Modular Forms
伽罗瓦表示和模形式
基本信息
- 批准号:0070659
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0070659The proposer will investigate connections between Galois representations and modular forms in the context of two fundamental problems in algebraic number theory. The first of these problems is to determine which Galois representations are associated to automorphic representations. The second problem is to relate special values of L-functions of varieties or motives to associated algebraic quantities (such as orders of Selmer groups). In the direction of the first problem the proposer intends to pursue extensions of his recent work on the modularity of various families of two-dimensional p-adic Galois representations. In particular, the proposer intends to explore possible extensions to representations of higher dimension. In the direction of the second problem, the proposer will investigate the influence of divisibility properties of constant terms of Eisenstein series on higher-rank groups (which often involve special values of L-functions) on congruences between the Hecke eigenvalues of these Eisenstein series and those of cusp forms.Both of these problems fall under the rubric "Arithmetic Geometry," a branch of mathematics which attempts to apply sophisticated mathematics to the often easy-to-state, but-hard-to-solve problems of number theory. The problems most readily tackled by arithmetic geometry include 1) counting the number of integer solutions to systems of polynomials and 2) understanding L-functions (functions attached to systems of polynomials and which encode information about their solutions). These problems are of increasing importance in applications. Recent advances in computing, cryptography, and coding theory have depended on solutions to these problems as do many proposed advances in these areas.
0070659提议者将研究伽罗瓦表示和模形式之间的联系,在代数数论中的两个基本问题的背景下。 第一个问题是确定哪些伽罗瓦表示与自守表示有关。 第二个问题是将簇或基的L-函数的特殊值与相关的代数量(如塞尔默群的阶)联系起来。 在第一个问题的方向的提议者打算追求他最近的工作扩展的模块化的各种家庭的二维p-adic伽罗瓦表示。特别是,提议者打算探索更高维度的表示的可能扩展。 在第二个问题的方向上,提出者将考察爱森斯坦级数常数项的整除性质对高阶群的影响(这往往涉及特殊值的L-函数)之间的同余这些爱森斯坦级数的Hecke特征值和那些尖点形式。这两个问题属于标题“算术几何,数学的一个分支,试图将复杂的数学应用于通常容易陈述但难以解决的数论问题。 算术几何最容易解决的问题包括:1)计算多项式系统的整数解的数量; 2)理解L-函数(函数附加到多项式系统,并编码关于其解的信息)。 这些问题在应用中越来越重要。 计算、密码学和编码理论的最新进展依赖于这些问题的解决方案,这些领域的许多提议进展也是如此。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Skinner其他文献
The mid-IR radio correlation at high angular resolution: NGC253
- DOI:
10.1007/bf00430148 - 发表时间:
1994-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Eric Keto;Roger Ball;Christopher Skinner;John Arens;Garrett Jernigan;Margaret Meixner;James Graham - 通讯作者:
James Graham
Christopher Skinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Skinner', 18)}}的其他基金
L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
- 批准号:
1901985 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2--Elucidating the Drivers and Consequences of Changes in Atmospheric Rivers from the Last Glacial Maximum to the Present Day
合作研究:P2C2——阐明从末次盛冰期至今大气河流变化的驱动因素和后果
- 批准号:
1903600 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
The p-adic geometry of Shimura varieties and applications to the Langlands program
Shimura 簇的 p 进几何及其在朗兰兹纲领中的应用
- 批准号:
1501064 - 财政年份:2015
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
L-values, Galois representations, and elliptic curves
L 值、伽罗瓦表示和椭圆曲线
- 批准号:
1301842 - 财政年份:2013
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
- 批准号:
0854974 - 财政年份:2009
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
L-values, Selmer Groups, and Automorphic Forms
L 值、Selmer 群和自守形式
- 批准号:
0701231 - 财政年份:2007
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
- 批准号:
0803223 - 财政年份:2007
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
- 批准号:
0456300 - 财政年份:2005
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
L-values, Galois Representations, and Modular Forms
L 值、伽罗瓦表示和模形式
- 批准号:
0245387 - 财政年份:2003
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
相似海外基金
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
- 批准号:
2301738 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2018
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2017
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Characterizations of Galois representations associated to Hilbert modular forms
与希尔伯特模形式相关的伽罗瓦表示的特征
- 批准号:
17H07074 - 财政年份:2017
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theory of congruences of Galois representations and modular forms for function fields
函数域的伽罗瓦表示和模形式的同余理论
- 批准号:
26400016 - 财政年份:2014
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois Representations and Modular Forms
伽罗瓦表示和模形式
- 批准号:
1252158 - 财政年份:2012
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant