Equations and Automorphic Forms

方程和自守形式

基本信息

  • 批准号:
    0758379
  • 负责人:
  • 金额:
    $ 43.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTPrincipal Investigator: Wiles, Andrew J. Proposal Number: DMS - 0758379Institution: Princeton UniversityTitle: Equations and Automorphic FormsThis project aims to study the problem of solving polynomial equations. The formula for the solution of the quadratic equation, at least in special cases, was known to the Babylonians and the solutions to cubic and quartic equations were developed by Italian mathematicians in the 16th century. In the 19th century it was shown that a general equation of degree greater than or equal to five has no formula of the same kind. However it is possible that equations in more than one variable might always have simple solutions obtained by extracting roots, just as exist for the quadratic, cubic and quartic equations. Our first goal is to try to find families of equations for which there are such solutions. Our second goal is to try to describe the solutions in many cases in terms of functions with symmetries called modular forms. These symmetries are more complicated than, but are related to, the kinds of symmetries satisfied by the trigonometric functions. The particular set of curves which will be investigated are the curves of genus one. These curves have received a lot of attention in recent years. The PI hopes to extend his research into whether these curves always have solvable points. His second and principal goal is to try to prove cases of non-solvable base change. This would enable one to describe suitable representations of Galois groups in terms of automorphic forms. This is a crucial part of the Langlands program and seems to be a key stumbling block in the way of proving general results about functoriality.
摘要项目负责人:Wiles, Andrew J.项目编号:DMS - 0758379机构:普林斯顿大学题目:方程组和自同构形式本项目旨在研究多项式方程的求解问题。二次方程的解公式,至少在特殊情况下,是巴比伦人知道的,而三次方程和四次方程的解是16世纪意大利数学家发明的。在19世纪,人们发现大于或等于5次的一般方程没有相同类型的公式。然而,有多个变量的方程可能总是有简单的解,通过拔根得到,就像二次方程、三次方程和四次方程一样。我们的第一个目标是找到有这样的解的方程组。我们的第二个目标是,在很多情况下,用对称的函数来描述解,称为模形式。这些对称比三角函数所满足的对称更复杂,但又与之相关。我们要研究的一组特殊的曲线是属1的曲线。近年来,这些曲线受到了很多关注。PI希望将他的研究扩展到这些曲线是否总是有可解点。他的第二个也是最主要的目标是试图证明碱变化不可解的情况。这将使人们能够根据自同构形式描述伽罗瓦群的合适表示。这是朗兰兹纲领的关键部分,似乎是证明关于函数性的一般结果的关键绊脚石。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Skinner其他文献

The mid-IR radio correlation at high angular resolution: NGC253
  • DOI:
    10.1007/bf00430148
  • 发表时间:
    1994-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Eric Keto;Roger Ball;Christopher Skinner;John Arens;Garrett Jernigan;Margaret Meixner;James Graham
  • 通讯作者:
    James Graham

Christopher Skinner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Skinner', 18)}}的其他基金

L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
  • 批准号:
    1901985
  • 财政年份:
    2019
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2--Elucidating the Drivers and Consequences of Changes in Atmospheric Rivers from the Last Glacial Maximum to the Present Day
合作研究:P2C2——阐明从末次盛冰期至今大气河流变化的驱动因素和后果
  • 批准号:
    1903600
  • 财政年份:
    2019
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
The p-adic geometry of Shimura varieties and applications to the Langlands program
Shimura 簇的 p 进几何及其在朗兰兹纲领中的应用
  • 批准号:
    1501064
  • 财政年份:
    2015
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
L-values, Galois representations, and elliptic curves
L 值、伽罗瓦表示和椭圆曲线
  • 批准号:
    1301842
  • 财政年份:
    2013
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
  • 批准号:
    0854974
  • 财政年份:
    2009
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
L-values, Selmer Groups, and Automorphic Forms
L 值、Selmer 群和自守形式
  • 批准号:
    0701231
  • 财政年份:
    2007
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
  • 批准号:
    0803223
  • 财政年份:
    2007
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
  • 批准号:
    0456300
  • 财政年份:
    2005
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
L-values, Galois Representations, and Modular Forms
L 值、伽罗瓦表示和模形式
  • 批准号:
    0245387
  • 财政年份:
    2003
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Galois Representations and Modular Forms
伽罗瓦表示和模形式
  • 批准号:
    0070659
  • 财政年份:
    2000
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
  • 批准号:
    2349888
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347095
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347097
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
  • 批准号:
    2401353
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
  • 批准号:
    2401444
  • 财政年份:
    2024
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
  • 批准号:
    2302208
  • 财政年份:
    2023
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Continuing Grant
Chiral de Rham complex and automorphic forms
手性德拉姆复合体和自守形式
  • 批准号:
    23K19008
  • 财政年份:
    2023
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
  • 批准号:
    2302011
  • 财政年份:
    2023
  • 资助金额:
    $ 43.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了