L-values, Selmer Groups, and Automorphic Forms
L 值、Selmer 群和自守形式
基本信息
- 批准号:0701231
- 负责人:
- 金额:$ 59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this proposal is one of the central problems in numbertheory: relate special values of L-functions to the orders of associated algebraic quantities, especially Selmer groups. This is a problem whose origins lie in the celebrated class number formula from algebraic number theory and which includes the conjecture of Birch and Swinnerton-Dyer about the L-function of an elliptic curve. The research described in this proposal aims to prove such relations for various L-functions arising from automorphic forms. The theory of automorphic forms provides a rich source of L-functions (conjecturally all) and - through its connections with algebraic varieties attached to quotients of symmetric spaces - it is also closely connected to the objects of interest to algebraic number theorists (esp. Galois representations). The investigator aims to further develop and exploit the p-adic properties of these connections to relate L-values and Selmer groups.The research described in this proposal aims to establish relations between certain analytic and algebraic objects. The analytic objects are L-functions- a special class of analytic functions built from number-theoretic data (this class includes the celebrated Riemann zeta function which is built from the prime numbers). For at least a century and a half L-functions have been central to efforts to tackle the most central problems in number theory (e.g., understanding the distribution of prime numbers). An important feature of L-functions is that their values at certain special points - these values are often called `special values' - are expected to be the orders of algebraic quantities associated to the data defining the L-function. The investigator aims to prove the existence of such relations for various classes of L-functions, drawing especially on the theory of automorphic forms. Automorphic forms are closely connected to both analysis (they are a rich source of L-functions, conjecturally all) and algebra. The investigator aims to prove such relations by systematically understanding the divisibility properties of the objects of interest (special values, automorphic forms, and Selmer groups) by powers of primes numbers.
The focus of this proposal is one of the central problems in numbertheory: relate special values of L-functions to the orders of associated algebraic quantities, especially Selmer groups. This is a problem whose origins lie in the celebrated class number formula from algebraic number theory and which includes the conjecture of Birch and Swinnerton-Dyer about the L-function of an elliptic curve. The research described in this proposal aims to prove such relations for various L-functions arising from automorphic forms. The theory of automorphic forms provides a rich source of L-functions (conjecturally all) and - through its connections with algebraic varieties attached to quotients of symmetric spaces - it is also closely connected to the objects of interest to algebraic number theorists (esp. Galois representations). The investigator aims to further develop and exploit the p-adic properties of these connections to relate L-values and Selmer groups.The research described in this proposal aims to establish relations between certain analytic and algebraic objects. The analytic objects are L-functions- a special class of analytic functions built from number-theoretic data (this class includes the celebrated Riemann zeta function which is built from the prime numbers). For at least a century and a half L-functions have been central to efforts to tackle the most central problems in number theory (e.g., understanding the distribution of prime numbers). An important feature of L-functions is that their values at certain special points - these values are often called `special values' - are expected to be the orders of algebraic quantities associated to the data defining the L-function. The investigator aims to prove the existence of such relations for various classes of L-functions, drawing especially on the theory of automorphic forms. Automorphic forms are closely connected to both analysis (they are a rich source of L-functions, conjecturally all) and algebra. The investigator aims to prove such relations by systematically understanding the divisibility properties of the objects of interest (special values, automorphic forms, and Selmer groups) by powers of primes numbers.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Skinner其他文献
The mid-IR radio correlation at high angular resolution: NGC253
- DOI:
10.1007/bf00430148 - 发表时间:
1994-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Eric Keto;Roger Ball;Christopher Skinner;John Arens;Garrett Jernigan;Margaret Meixner;James Graham - 通讯作者:
James Graham
Christopher Skinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Skinner', 18)}}的其他基金
L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
- 批准号:
1901985 - 财政年份:2019
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2--Elucidating the Drivers and Consequences of Changes in Atmospheric Rivers from the Last Glacial Maximum to the Present Day
合作研究:P2C2——阐明从末次盛冰期至今大气河流变化的驱动因素和后果
- 批准号:
1903600 - 财政年份:2019
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
The p-adic geometry of Shimura varieties and applications to the Langlands program
Shimura 簇的 p 进几何及其在朗兰兹纲领中的应用
- 批准号:
1501064 - 财政年份:2015
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
L-values, Galois representations, and elliptic curves
L 值、伽罗瓦表示和椭圆曲线
- 批准号:
1301842 - 财政年份:2013
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
- 批准号:
0854974 - 财政年份:2009
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
- 批准号:
0803223 - 财政年份:2007
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
- 批准号:
0456300 - 财政年份:2005
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
L-values, Galois Representations, and Modular Forms
L 值、伽罗瓦表示和模形式
- 批准号:
0245387 - 财政年份:2003
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
Galois Representations and Modular Forms
伽罗瓦表示和模形式
- 批准号:
0070659 - 财政年份:2000
- 资助金额:
$ 59万 - 项目类别:
Continuing Grant
相似国自然基金
阿贝尔簇的Selmer群的rank在无限伽罗华扩张下的增长
- 批准号:10341001
- 批准年份:2003
- 资助金额:6.0 万元
- 项目类别:专项基金项目
相似海外基金
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPAS-2020-00094 - 财政年份:2022
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Arithmetic statistics of Selmer groups with a Galois action
具有伽罗瓦动作的 Selmer 群的算术统计
- 批准号:
2742677 - 财政年份:2022
- 资助金额:
$ 59万 - 项目类别:
Studentship
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPIN-2020-05915 - 财政年份:2022
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Individual
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPAS-2020-00094 - 财政年份:2021
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPIN-2020-05915 - 财政年份:2021
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Individual
Selmer groups, arithmetic statistics, and parity conjectures.
Selmer 群、算术统计和宇称猜想。
- 批准号:
EP/V006541/1 - 财政年份:2021
- 资助金额:
$ 59万 - 项目类别:
Fellowship
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
DGECR-2020-00538 - 财政年份:2020
- 资助金额:
$ 59万 - 项目类别:
Discovery Launch Supplement
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPAS-2020-00094 - 财政年份:2020
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Automorphy and adjoint Selmer groups over CM fields
CM 场上的自同构和伴随 Selmer 群
- 批准号:
RGPIN-2020-05915 - 财政年份:2020
- 资助金额:
$ 59万 - 项目类别:
Discovery Grants Program - Individual