The p-adic geometry of Shimura varieties and applications to the Langlands program

Shimura 簇的 p 进几何及其在朗兰兹纲领中的应用

基本信息

  • 批准号:
    1501064
  • 负责人:
  • 金额:
    $ 15.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This is a research project in the general area of number theory. This area of mathematics has applications to areas such as cryptography and to physics. The particular branch of number theory considered in this project is arithmetic geometry where properties of interest in number theory are studied by geometric methods. The overall theme of the research is the interplay between arithmetic geometry and the Langlands correspondence for number fields. There have been many recent breakthroughs in the field, such as new techniques for proving reciprocity (modularity lifting theorems as well as the emerging p-adic Langlands program) and the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces. All of these developments have depended crucially on being able to p-adically interpolate automorphic forms. The concept of p-adic automorphic forms has a natural definition in terms of the geometry and cohomology of Shimura varieties and therefore p-adic arithmetic geometry is useful for studying them.The PI investigates two intertwined areas: on one hand, applications of p-adic arithmetic geometry (specifically the theory of perfectoid spaces) to p-adic automorphic forms and, on the other hand, p-adic and mod p analogues of the classical Langlands program. Specifically, the PI will study a new approach to the p-adic local Langlands correspondence via the Taylor-Wiles method, to further study torsion occurring in the cohomology of Shimura varieties and the properties at p of the associated Galois representations and to develop a new approach to instances of the Tate conjecture in the context of Shimura varieties. Some of the new techniques that the PI intends to use are the Taylor-Wiles patching method applied to completed cohomology and matching parameters in local deformation rings with Hecke operators. Another key idea involves studying perfectoid Shimura varieties via their associated period domains. The research project lies at the intersection of algebraic number theory, representation theory and algebraic geometry, with a focus on the interplay between p-adic arithmetic geometry and the Langlands correspondence for number fields. A central motif in number theory is the classification of algebraic extensions of number fields. Class field theory addresses this for extensions with abelian Galois group. The Langlands program provides a framework for a vast generalization of class field theory to the non-abelian setting. At its heart is the conjectural correspondence between automorphic representations and Galois representations, which is often realized by geometric objects, such as Shimura varieties. Therefore, arithmetic geometry provides many important tools for studying Langlands correspondences. Many of the most spectacular recent results in number theory are instances of the Langlands correspondence, such as Fermat's last theorem, the Sato-Tate conjecture and Serre's conjecture.
这是一个数论领域的研究项目。这一数学领域在密码学和物理学等领域也有应用。特别是分支数论考虑在这个项目是算术几何的利益在数论的性质进行了研究的几何方法。总体主题的研究是相互作用之间的算术几何和朗兰兹对应的号码领域。最近在这个领域有许多突破,例如证明互易性的新技术(模提升定理以及新兴的p-adic Langlands程序)和局部对称空间上同调中与挠类相关的伽罗瓦表示的构造。所有这些发展都依赖于能够p-基插值自守形式。p-adic自守形式的概念在Shimura簇的几何和上同调方面有一个自然的定义,因此p-adic算术几何对研究它们很有用。PI研究两个相互交织的领域:一方面,p-adic算术几何的应用(特别是perfectoid空间的理论),以p-adic自守形式,另一方面,p-adic和mod p类似的经典朗兰兹计划。具体来说,PI将通过泰勒-怀尔斯方法研究p-adic局部朗兰兹对应的新方法,进一步研究在志村簇的上同调中发生的扭转和相关伽罗瓦表示在p处的性质,并在志村簇的背景下开发一种新方法来解决泰特猜想的实例。PI打算使用的一些新技术是泰勒-怀尔斯修补方法,适用于完成上同调和匹配参数的局部变形环与Hecke算子。另一个关键的想法是通过相关的周期域来研究完全拟志村变种。该研究项目位于代数数论,表示论和代数几何的交叉点,重点是p-adic算术几何和数域的朗兰兹对应之间的相互作用。数论中的一个中心主题是数域的代数扩张的分类。类域理论解决了这一问题的扩展与阿贝尔伽罗瓦群。朗兰兹纲领提供了一个框架,将类场论广泛推广到非阿贝尔环境。其核心是自守表示和伽罗瓦表示之间的几何对应,这通常是由几何对象实现的,例如志村变种。因此,算术几何为研究朗兰兹对应提供了许多重要的工具。 最近数论中许多最引人注目的结果都是朗兰兹对应的例子,例如费马最后定理,佐藤-泰特猜想和塞尔猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Skinner其他文献

The mid-IR radio correlation at high angular resolution: NGC253
  • DOI:
    10.1007/bf00430148
  • 发表时间:
    1994-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Eric Keto;Roger Ball;Christopher Skinner;John Arens;Garrett Jernigan;Margaret Meixner;James Graham
  • 通讯作者:
    James Graham

Christopher Skinner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Skinner', 18)}}的其他基金

L-Values, Special Cycles, and Euler Systems
L 值、特殊循环和欧拉系统
  • 批准号:
    1901985
  • 财政年份:
    2019
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2--Elucidating the Drivers and Consequences of Changes in Atmospheric Rivers from the Last Glacial Maximum to the Present Day
合作研究:P2C2——阐明从末次盛冰期至今大气河流变化的驱动因素和后果
  • 批准号:
    1903600
  • 财政年份:
    2019
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
L-values, Galois representations, and elliptic curves
L 值、伽罗瓦表示和椭圆曲线
  • 批准号:
    1301842
  • 财政年份:
    2013
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Automorphic forms, Galois representations, periods and p-adic L-functions
FRG:协作研究:自守形式、伽罗瓦表示、周期和 p 进 L 函数
  • 批准号:
    0854974
  • 财政年份:
    2009
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
Equations and Automorphic Forms
方程和自守形式
  • 批准号:
    0758379
  • 财政年份:
    2008
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
L-values, Selmer Groups, and Automorphic Forms
L 值、Selmer 群和自守形式
  • 批准号:
    0701231
  • 财政年份:
    2007
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
  • 批准号:
    0803223
  • 财政年份:
    2007
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
Collaborative Research FRG: Automorphic Forms, Galois Representations, and Special Values of L-Functions
协作研究 FRG:自守形式、伽罗瓦表示和 L 函数的特殊值
  • 批准号:
    0456300
  • 财政年份:
    2005
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
L-values, Galois Representations, and Modular Forms
L 值、伽罗瓦表示和模形式
  • 批准号:
    0245387
  • 财政年份:
    2003
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant
Galois Representations and Modular Forms
伽罗瓦表示和模形式
  • 批准号:
    0070659
  • 财政年份:
    2000
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mod p geometry of Shimura varieties and applications
Shimura 品种的 Mod p 几何形状及应用
  • 批准号:
    EP/Y030648/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Research Grant
Arithmetic Applications of the Geometry of Shimura Varieties
志村品种几何学的算术应用
  • 批准号:
    2200694
  • 财政年份:
    2022
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Continuing Grant
Geometry of Shimura varieties in positive characteristic
志村品种的几何形状的积极特征
  • 批准号:
    21K13765
  • 财政年份:
    2021
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Discovery Grants Program - Individual
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
  • 批准号:
    1802169
  • 财政年份:
    2018
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
  • 批准号:
    1803623
  • 财政年份:
    2017
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
  • 批准号:
    1701619
  • 财政年份:
    2017
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Standard Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2017
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2016
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Discovery Grants Program - Individual
New applications of the geometry of Shimura varieties to number theory on totally real number fields
志村簇几何在全实数域数论中的新应用
  • 批准号:
    15K17518
  • 财政年份:
    2015
  • 资助金额:
    $ 15.95万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了