Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
基本信息
- 批准号:0070755
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research involves localization type effects for ergodic Schrodingeroperators, the general study of spectra and wave functions ofmultidimensional Schrodinger operators, and also of the transportphenomena of quasiperiodic operators and two-dimensional magneticoperators in the integer quantum Hall regime. An important objective is todevelop nonperturbative methods of proving localization type effects forSchrodinger operators with deterministic potentials. The other goal is tostudy the relation between spectral and quantum-dynamical properties andbehavior of the generalized eigenfunctions, particularly outside thelocalization range and in the multidimensional case. Another goal of theproposed research is to study singular continuous spectrum that exhibitscritical behavior and/or anomalous transport, particularly for models whereit appears for critical values (or intervals) of the parameters. The proposed research is centered around the fundamental propertiesof disordered systems that serve as models of systems with impurities.Deterministic, particularly quasiperiodic, potentials are most often usedto model quasicrystals. In order to be able to understand much of theexperimental data on quasicrystals, it is particularly important toinvestigate the transport coefficients like the electrical and heatconductivities of the microscopic models. Such an understanding is mosthelpful for finding new materials with desired physical properties. Thismay lead to various industrial applications (the first one nowadays beingthe covering of pans replacing the conventional Tefal film). Disorderedsystems are also used in modeling many other micro and macro effects: fromquantum localization to earthquakes. Our research concerns the anomalousspectral and diffusive properties of quasiperiodic and other deterministicstructures. The quantum Hall effect is since 1985 used by the NationalBureau of Standards to define the Fine Structure Constant (and hence theelectrical charge of an electron). It is still not well understood why theexperiment can be reproduced with a relative error of only $10^{-8}$. Ourresearch is concerned with a microscopic theory of the quantum Hall effectthat is aimed at getting deeper insights of this phenomena.
本研究涉及遍历薛定谔算符的定域型效应,多维薛定谔算符的谱和波函数的一般研究,以及准周期算符和二维磁算符在整数量子霍尔区的输运现象。一个重要的目标是发展证明具有确定性势的薛定谔算子的局部化型效应的非微扰方法。另一个目标是研究光谱和量子动力学性质与广义本征函数行为之间的关系,特别是在局域范围之外和多维情况下。本研究的另一个目标是研究奇异连续谱的临界行为和/或异常输运,特别是对于模型,它出现在临界值(或区间)的参数。所提出的研究是围绕着无序系统的基本性质,作为系统的模型与inspirations.Deterministic,特别是准周期,最常用于模型quasicrystals。 为了能够理解大量的准晶实验数据,研究微观模型的输运系数(如电导率和热导率)尤为重要。这样的理解对于寻找具有所需物理性能的新材料是非常有帮助的。这可能会导致各种工业应用(第一个现在是覆盖锅取代传统的特福薄膜)。 无序系统也被用于模拟许多其他微观和宏观效应:从量子局域化到地震。我们的研究涉及准周期结构和其他确定性结构的非线性谱和扩散性质。自1985年以来,量子霍尔效应被国家标准局用于定义精细结构常数(以及电子的电荷)。为什么这个实验可以重复而相对误差只有10 ^{-8}美元,这一点至今还没有很好的理解。我们的研究关注的是量子霍尔效应的微观理论,旨在更深入地了解这种现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Jitomirskaya其他文献
Second phase transition line
第二阶段过渡线
- DOI:
10.1007/s00208-017-1543-1 - 发表时间:
2016-08 - 期刊:
- 影响因子:1.4
- 作者:
Artur Avila;Svetlana Jitomirskaya;Qi Zhou - 通讯作者:
Qi Zhou
Anderson localization for multi-frequency quasi-periodic operators on Z^d
Z^d 上多频准周期算子的安德森定位
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Svetlana Jitomirskaya;Wencai Liu;Yunfeng Shi - 通讯作者:
Yunfeng Shi
Singular Continuous Spectrum for Singular Potentials
奇异势的奇异连续谱
- DOI:
10.1007/s00220-016-2823-4 - 发表时间:
2016-04 - 期刊:
- 影响因子:2.4
- 作者:
Svetlana Jitomirskaya;Fan Yang - 通讯作者:
Fan Yang
Svetlana Jitomirskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Jitomirskaya', 18)}}的其他基金
Spectral Transitions and Critical Phenomena
光谱跃迁和临界现象
- 批准号:
2155211 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052899 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Schrodinger Operators with Spectral Transitions
具有谱跃迁的薛定谔算子
- 批准号:
1901462 - 财政年份:2019
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1401204 - 财政年份:2014
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1101578 - 财政年份:2011
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Spectral Properties of Ergodic Schroedinger Operators
遍历薛定谔算子的谱性质
- 批准号:
0601081 - 财政年份:2006
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
- 批准号:
0300974 - 财政年份:2003
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Spectral Theory of Schrodinger Operators and Localization Type Effects in Disordered Environments
无序环境中薛定谔算子的谱理论和局域型效应
- 批准号:
9706443 - 财政年份:1997
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
- 批准号:
9501265 - 财政年份:1995
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
- 批准号:31371354
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
- 批准号:30870030
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
- 批准号:
23K03274 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
- 批准号:
23K19236 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/2 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Exploring universal relations in nonequilibrium systems using optimal transport theory
使用最优输运理论探索非平衡系统中的普遍关系
- 批准号:
23K13032 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Multi-marginal Optimal Transport: Generative models meet Density Functional Theory
多边际最优传输:生成模型满足密度泛函理论
- 批准号:
RGPIN-2022-05207 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Theory of Radiation Transport: Nuclear Technology Frontiers (MaThRad)
辐射传输数学理论:核技术前沿(MaThRad)
- 批准号:
EP/W026899/1 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
Optimal Transport Applications to Probability, Machine Learning, and Kinetic Theory
最优运输在概率、机器学习和动力学理论中的应用
- 批准号:
2205937 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant