RUI: Lagrangian Chaos: Phase Separation, Coalescence and Aggregation
RUI:拉格朗日混沌:相分离、合并和聚集
基本信息
- 批准号:0071771
- 负责人:
- 金额:$ 12.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This condensed matter physics project concentrates on the effects of Lagrangian chaos (chaotic particle motion and fluid mixing) on multiphase processes: phase separation and coalescence; droplet break-up, and aggregation of suspended particles. There is significant interest in these processes, both from fundamental and practical perspectives. Previous research has studied the effects of simple shearing flows on multiphase processes; however, those studies did not consider advection of drops between regions with varying shear. Advection is particularly important in light of recent discoveries that Lagrangian chaos occurs for flows that are not chaotic or turbulent themselves; rather, chaotic trajectories occur even in well-ordered, laminar flows. This research will generalize previous measures used to characterize multiphase processes (e.g., the Capillary number) to account for advection in general and Lagrangian chaos in particular. A series of experiments and numerical simulations are proposed in simple two- and three-dimensional fluid flows composed of chains of alternating vortices. The studies are done entirely with undergraduates; the research provides them with an opportunity to experience novel research at a time when they must make important career decisions. Furthermore, the techniques that they learn help prepare them for graduate school and/or careers in academics, industry or government.%%%Lagrangian chaos is the process by which impurities in a fluid flow can follow trajectories that are chaotic, even if the flow itself is very simple and well-ordered. Experiments are proposed to study the effects of Lagrangian chaos on multiphase processes, which involve fluids containing either a second, immiscible fluid (such as oil in water) or suspended particles. Studies will be done in both two- and three-dimensional flows, and the experiments will be complemented by numerical simulations. The research is applicable to a wide range of industrial processes, since many applications employ multiphase fluid systems. Previous research focused on how simple shearing flows break up immiscible fluids into smaller droplets or prevent them from coalescing into larger drops. However, those studies did not consider chaotic motion of drops between regions of varying shear. The proposed research will fill the gap in this understanding. The studies are done entirely with undergraduates; the research provides them with opportunities to experience novel research at a time when they must make important career decisions. F Furthermore, the techniques that they learn help prepare them for graduate school and/or careers in academics, industry or government.***
这个凝聚态物理项目集中在拉格朗日混沌(混沌粒子运动和流体混合)对多相过程的影响:相分离和聚结;液滴破碎和悬浮粒子聚集。 从根本和实际的角度来看,人们对这些进程都很感兴趣。 以前的研究已经研究了简单剪切流对多相过程的影响,但是,这些研究没有考虑不同剪切区域之间的液滴平流。 平流是特别重要的,鉴于最近的发现,拉格朗日混沌发生的流动本身并不混乱或湍流;相反,混乱的轨迹发生,甚至在良好的秩序,层流。 这项研究将概括以前用于表征多相过程的措施(例如,毛细管数)来解释一般的平流,特别是拉格朗日混沌。 在由交替涡链组成的简单二维和三维流体流动中,提出了一系列的实验和数值模拟。这些研究完全是与本科生一起完成的;这项研究为他们提供了一个机会,让他们在必须做出重要职业决定的时候体验新颖的研究。此外,他们学到的技术帮助他们为研究生院和/或学术,工业或政府职业做好准备。拉格朗日混沌是流体流动中的杂质可以遵循混沌轨迹的过程,即使流动本身非常简单且有序。 提出实验来研究拉格朗日混沌对多相过程的影响,其中涉及包含第二种不混溶流体(例如水中的油)或悬浮颗粒的流体。 研究将在二维和三维流动中进行,并将通过数值模拟来补充实验。该研究适用于广泛的工业过程,因为许多应用采用多相流体系统。 以前的研究主要集中在简单的剪切流如何将不混溶的流体破碎成较小的液滴或防止它们合并成较大的液滴。然而,这些研究没有考虑液滴在不同剪切区域之间的混沌运动。拟议中的研究将填补这一认识上的差距。这些研究完全是与本科生一起完成的;研究为他们提供了在他们必须做出重要职业决定的时候体验新研究的机会。F此外,他们学习的技术有助于他们为研究生院和/或学术界,工业或政府职业做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Solomon其他文献
OA-41 Iberdomide, bortezomib, and dexamethasone (IberVd) in transplant-ineligible newly diagnosed multiple myeloma (NDMM): results from the CC-220-MM-001 trial
- DOI:
10.1016/s2152-2650(23)01608-7 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Darrell White;Brea Lipe;Mercedes Gironella Mesa;Ruben Niesvizky;Albert Oriol;Anna Sureda Balari;Manisha Bhutani;Cristina Encinas;Abdullah Khan;Michael Amatangelo;Kexin Jin;Thomas Solomon;Kevin Hong;Alpesh Amin;Paulo Maciag;Niels van de Donk;Sagar Lonial - 通讯作者:
Sagar Lonial
Theory and Method in Popular Music Analysis: Text and Meaning
流行音乐分析的理论与方法:文本与意义
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Thomas Solomon - 通讯作者:
Thomas Solomon
MM-488 Iberdomide, Bortezomib, and Dexamethasone (IberVd) in Transplant-Ineligible Newly Diagnosed Multiple Myeloma (NDMM): Results From the CC-220-MM-001 Trial
- DOI:
10.1016/s2152-2650(24)01687-2 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Darrell White;Brea Lipe;Mercedes Gironella;Ruben Niesvizky;Albert Oriol;Anna Sureda Balari;Manisha Bhutani;Cristina Encinas;Abdullah Khan;Michael Amatangelo;Kexin Jin;Thomas Solomon;Kevin Hong;Alpesh Amin;Paulo Maciag;Niels W.C.J. van de Donk;Sagar Lonial - 通讯作者:
Sagar Lonial
Among the Jasmine Trees: Music and Modernity in Contemporary Syria . By Jonathan Holt Shannon. Middletown: Wesleyan University Press, 2006. xxvi + 252 pp. ISBN 978-0-8195-6798-7
茉莉花树丛中:当代叙利亚的音乐与现代性。
- DOI:
10.1017/s0261143009990183 - 发表时间:
2009 - 期刊:
- 影响因子:0.4
- 作者:
Thomas Solomon - 通讯作者:
Thomas Solomon
OA-55 Iberdomide, Daratumumab, and Dexamethasone (IberDd) in Transplant-Ineligible (TNE) Newly Diagnosed Multiple Myeloma (NDMM): Results From the CC-220-MM-001 Trial
- DOI:
10.1016/s2152-2650(24)01896-2 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Anna Sureda Balari;Abdullah Khan;Albert Oriol;Mercedes Gironella Mesa;Faiz Anwer;Cristina Encinas Rodríguez;Brea Lipe;Paula Rodríguez-Otero;Michael Amatangelo;Kexin Jin;Thomas Solomon;Lilia Taningco;Alpesh Amin;Paulo Maciag;Sagar Lonial - 通讯作者:
Sagar Lonial
Thomas Solomon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Solomon', 18)}}的其他基金
RUI: Experimental Studies of Active Mixing in Extended Fluid Systems
RUI:扩展流体系统中主动混合的实验研究
- 批准号:
2302708 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
RUI: Lagrangian studies of active mixing -- barriers, enhanced transport and collective behavior
RUI:主动混合的拉格朗日研究——障碍、增强的运输和集体行为
- 批准号:
1806355 - 财政年份:2018
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
RUI: The effects of three-dimensional fluid flows on front propagation
RUI:三维流体流动对前沿传播的影响
- 批准号:
1361881 - 财政年份:2014
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Workshop: Nonlinear Dynamics and Fluid Instabilities in the 21st Century; Haverford College; near Philadelphis, Pennsylvania; May 19 - 20, 2011
研讨会:21世纪的非线性动力学和流体不稳定性;
- 批准号:
1103121 - 财政年份:2011
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
RUI: Reaction Fronts in Fluid Flows -- Pinning, Lobes and Flights
RUI:流体流动中的反应前沿——钉扎、波瓣和飞行
- 批准号:
1004744 - 财政年份:2010
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
RUI: Fronts and Patterns in Advection-Reaction-Diffusion Systems
RUI:平流反应扩散系统的前沿和模式
- 批准号:
0703635 - 财政年份:2007
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
RUI: Pattern Formation in Reaction-Advection-Diffusion Systems with Lagrangian Chaos
RUI:拉格朗日混沌反应-平流-扩散系统中的模式形成
- 批准号:
0404961 - 财政年份:2004
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
hypertoric 簇上的辛对偶与量子化Lagrangian对应
- 批准号:12371064
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于Lagrangian-DG方法的水下爆炸全时域流固耦合模拟研究
- 批准号:52001010
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多尺度随机Eulerian-Lagrangian方法
- 批准号:11601381
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
非凸二次优化的Lagrangian对偶理论与应用
- 批准号:11571029
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
可压缩湍流粒子输运的拉格朗日(Lagrangian)研究
- 批准号:U1330107
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:联合基金项目
锥优化的修正Lagrangian对偶理论研究
- 批准号:11101248
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
非线性修正Lagrangian对偶理论及其应用
- 批准号:11026047
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
紧致曲面上Lagrangian系统的Mather理论
- 批准号:11026129
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 12.12万 - 项目类别:
Research Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 12.12万 - 项目类别:
Fellowship
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
- 批准号:
2319494 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Continuing Grant
Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
- 批准号:
2302624 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Study of rain fall based on super-droplet method and hierarchical Lagrangian analysis
基于超液滴法和分层拉格朗日分析的降雨研究
- 批准号:
23K03265 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unraveling anomalous transport in turbulence via two-time correlation function of Lagrangian velocity
通过拉格朗日速度的二次相关函数揭示湍流中的异常传递
- 批准号:
23K03247 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ventilation and mixing of surface and intermediate waters in the tropical Atlantic: perspectives from Lagrangian particles and tracers
热带大西洋表层水和中间水的通风和混合:拉格朗日粒子和示踪剂的视角
- 批准号:
2219852 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant