Personalized fitting and evaluation of hearing aids with EEG responses
通过脑电图反应对助听器进行个性化验配和评估
基本信息
- 批准号:EP/M026728/1
- 负责人:
- 金额:$ 115.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has been estimated that some 6 million people in the UK could benefit from hearing aids, but there are only approximately 2 million hearing aid users, and of these, only 70% use their hearing aids regularly. Modern hearing aids are complex devices with advanced features (gain in different frequency bands, amplitude compression, feedback cancellation, noise reduction, directional microphones etc.) and require professionals to fit them. Limited benefit from hearing aids is a major reason why many patients do not use their devices regularly. Conventionally, hearing aids are fitted based primarily on the 'audiogram', which informs on the quietest sounds (short tones) that the patient can hear at different frequencies and is obtained from patients' voluntary and subjective response (usually by clicking a button) to progressively quieter sounds. However, it is clear that the audiogram only provides limited insight into hearing loss, and fitting hearing aids based on this alone can lead to very diverse results in what is of most importance to patients, namely understanding speech. The difficulty of understanding speech in noise is one of the chief complaints of hearing aid users. The current project aims to improve personalized fitting of hearing aids to individual patients. The key technique will be the use of measurements taken directly from the brain's response to sound, by analysing the electroencephalographic (EEG) responses obtained from electrodes placed on the scalp. The analysis is 'objective', without requiring patients' voluntary and 'subjective' (and not always reliable) response to stimuli. We think this is important as it can be carried out in patients who are unable to provide such voluntary responses, for example infants or the elderly with dementia. By monitoring hearing without constant interruption to assess patients' perception, the performance of the hearing aid can also be assessed in natural listening conditions and over a longer time period. Ultimately this approach may also allow hearing aid settings to be adjusted without the presence of an audiologist, as users' needs and the auditory environment change. The test stimuli (hearing challenges) we will develop for the project will include a wider range of sounds than are currently routinely used in clinics, allowing for more subtle (differential) diagnosis of hearing loss, and a focus on the response to speech (including speech-in-noise).The key research aim in this project is to achieve a robust assessment of hearing function and speech processing in the brain (from the cochlea to the brain stem and cerebral cortex) by the computer analysis of EEG responses to complex real-world signals. This presents major scientific and technical challenges, needing the development of novel signal-analysis methods for speech and EEG data, which can be related to hearing impairment, cognition, as well as hearing aid settings and performance. The combination of these major challenges and a focus on patient benefit makes this an exciting and adventurous project. The main objectives of this proposal are to propose, assess and recommend:1. Signal processing methods to extract information from EEG signals on hearing performance and patients' access to speech2. Stimuli to use in assessing hearing3. Algorithms to optimize hearing aid fitting, based on parameters extracted from EEG responses This interdisciplinary work will be carried out as a collaboration between universities (hearing science, speech processing, signal analysis), industry (hearing technologies) and patients (choosing hearing challenges). The benefits of undertaking this work are expected to be to patients and their family and carers (improved quality of life from using hearing aids), the health-services (improved efficiency), industry (new diagnostic technologies) and the scientific community (better understanding of hearing; improved methods for analysing EEG signals).
据估计,英国约有600万人可以从助听器中受益,但只有约200万助听器用户,其中只有70%经常使用助听器。现代助听器是具有高级功能的复杂设备(不同频带的增益、振幅压缩、反馈消除、降噪、定向麦克风等)。需要专业人士来安装。助听器的益处有限是许多患者不经常使用助听器的主要原因。传统上,助听器主要基于“音频图”来安装,该音频图告知患者可以在不同频率下听到的最安静的声音(短音),并且从患者对逐渐安静的声音的自愿和主观反应(通常通过点击按钮)中获得。然而,很明显,听力图只能提供对听力损失的有限了解,仅基于此安装助听器可能会导致对患者最重要的结果,即理解语音。在噪声中理解语音的困难是助听器使用者的主要抱怨之一。目前的项目旨在改善助听器对个别患者的个性化选配。关键技术将是通过分析从头皮上的电极获得的脑电图(EEG)反应,直接从大脑对声音的反应中进行测量。分析是“客观的”,不需要患者对刺激的自愿和“主观”(并不总是可靠的)反应。我们认为这很重要,因为它可以在无法提供这种自愿反应的患者中进行,例如患有痴呆症的婴儿或老年人。通过在不间断的情况下监测听力来评估患者的感知,助听器的性能也可以在自然听力条件下和更长的时间内进行评估。最终,随着用户需求和听觉环境的变化,这种方法还可以在没有听力学家在场的情况下调整助听器设置。测试刺激(听力挑战)我们将开发的项目将包括更广泛的声音比目前常规使用的诊所,允许更微妙的听力损失的(鉴别)诊断,以及对言语反应的关注(包括噪声中的语音)。本项目的主要研究目的是对大脑的听觉功能和语音处理进行可靠的评估(从耳蜗到脑干和大脑皮层)通过计算机分析EEG对复杂现实世界信号的反应。这提出了重大的科学和技术挑战,需要开发新的语音和EEG数据信号分析方法,这些数据可能与听力障碍,认知以及助听器设置和性能有关。这些主要挑战和对患者利益的关注相结合,使这成为一个令人兴奋和冒险的项目。本提案的主要目的是提出、评估和建议:1.从EEG信号中提取关于听力表现和患者获得语音的信息的信号处理方法2。刺激用于评估听力3.基于从EEG响应中提取的参数优化助听器验配的算法这项跨学科工作将作为大学(听力科学,语音处理,信号分析),工业(听力技术)和患者(选择听力挑战)之间的合作进行。开展这项工作的好处预计将惠及患者及其家属和护理人员(使用助听器提高生活质量)、保健服务(提高效率)、工业(新的诊断技术)和科学界(更好地了解听力;改进分析脑电信号的方法)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Speech Auditory Brainstem Responses: Effects of Background, Stimulus Duration, Consonant-Vowel, and Number of Epochs.
语音听觉的脑干反应:背景,刺激持续时间,辅音元音和时代数量的影响。
- DOI:10.1097/aud.0000000000000648
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:BinKhamis G;Léger A;Bell SL;Prendergast G;O'Driscoll M;Kluk K
- 通讯作者:Kluk K
Supplemental material for Speech Auditory Brainstem Responses in Adult Hearing Aid Users: Effects of Aiding and Background Noise, and Prediction of Behavioral Measures
成人助听器使用者言语听觉脑干反应的补充材料:辅助和背景噪声的影响以及行为测量的预测
- DOI:10.25384/sage.8501234
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:BinKhamis G
- 通讯作者:BinKhamis G
Detecting cortical responses to continuous running speech using EEG data from only one channel.
仅使用来自一个通道的脑电图数据来检测皮层对连续运行语音的反应。
- DOI:10.1080/14992027.2022.2035832
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Aljarboa GS
- 通讯作者:Aljarboa GS
Evoked responses to speech: Improving measurement, understanding limitations and exploring clinical applications
对言语的诱发反应:改进测量、了解局限性并探索临床应用
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bell S.l.
- 通讯作者:Bell S.l.
Can we measure Evoked Responses to speech?
我们可以测量对言语的诱发反应吗?
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bell, S.L.
- 通讯作者:Bell, S.L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bell其他文献
Mutant p53 induces SH3BGRL expression to promote cell engulfment
突变型 p53 诱导 SH3BGRL 表达以促进细胞吞噬
- DOI:
10.1038/s41420-025-02582-x - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.000
- 作者:
Lobsang Dolma;Mary I. Patterson;Antonia Banyard;Callum Hall;Steven Bell;Wolfgang Breitwieser;Sudhakar Sahoo;John Weightman;Maria Pazos Gil;Garry Ashton;Caron Behan;Nicola Fullard;Lewis D. Williams;Patricia AJ. Muller - 通讯作者:
Patricia AJ. Muller
The write algorithm: promoting responsible artificial intelligence usage and accountability in academic writing
- DOI:
10.1186/s12916-023-03039-7 - 发表时间:
2023-09-04 - 期刊:
- 影响因子:8.300
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Nucleus of fairness: epigenetic ageing, social determinants of health and the imperative for proactive preventive measures
公平的核心:表观遗传衰老、健康的社会决定因素以及积极预防措施的必要性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.3
- 作者:
Steven Bell - 通讯作者:
Steven Bell
F96. ALCOHOL USE AND DEMENTIA IN DIVERSE POPULATIONS
F96. 不同人群中的酒精使用与痴呆
- DOI:
10.1016/j.euroneuro.2024.08.507 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Anya Topiwala;Daniel Levey;Hang Zhou;Joseph Deak;Keyrun Adhikari;Klaus P. Ebmeier;Steven Bell;Stephen Burgess;Thomas E. Nichols;Michael Gaziano;Murray Stein;Joel Gelernter - 通讯作者:
Joel Gelernter
Using webcasts as a teaching tool
- DOI:
10.1007/bf02763506 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Steven Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bell', 18)}}的其他基金
Building the Queen's University of Belfast AMR Network (QUBAN)
建设贝尔法斯特女王大学 AMR 网络 (QUBAN)
- 批准号:
EP/M027473/1 - 财政年份:2015
- 资助金额:
$ 115.71万 - 项目类别:
Research Grant
New approaches to potential theory and conformal mapping
势论和共形映射的新方法
- 批准号:
1001701 - 财政年份:2010
- 资助金额:
$ 115.71万 - 项目类别:
Standard Grant
Surface-active Gels as Next-generation Chemical Sensors
表面活性凝胶作为下一代化学传感器
- 批准号:
EP/E028543/1 - 财政年份:2007
- 资助金额:
$ 115.71万 - 项目类别:
Research Grant
Developing a clinical indicator of depth of anaesthesia based on auditory evoked potentials
基于听觉诱发电位开发麻醉深度的临床指标
- 批准号:
EP/D505593/1 - 财政年份:2006
- 资助金额:
$ 115.71万 - 项目类别:
Research Grant
Complexity of the objects of complex analysis and holomorphic mapping problems
复分析对象的复杂性与全纯映射问题
- 批准号:
0072197 - 财政年份:2000
- 资助金额:
$ 115.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations and Complex Analysis
数学科学:偏微分方程和复分析
- 批准号:
9623098 - 财政年份:1996
- 资助金额:
$ 115.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations in Complex Analysis
数学科学:复分析中的偏微分方程
- 批准号:
9302513 - 财政年份:1993
- 资助金额:
$ 115.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mapping Problems in Complex Analysis
数学科学:复分析中的映射问题
- 批准号:
8922810 - 财政年份:1990
- 资助金额:
$ 115.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Holomorphic Mappings in Several Complex Variables
数学科学:多个复变量的全纯映射
- 批准号:
8619858 - 财政年份:1987
- 资助金额:
$ 115.71万 - 项目类别:
Continuing Grant
相似国自然基金
有限群的结构及 Fitting 类中一些问题的研究
- 批准号:11301227
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Carter 子群, 广义Fitting子群,正规性条件与群结构研究
- 批准号:11171353
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
局部分析与有限群的共轭类
- 批准号:10771132
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Developing an oral health screening tool for an integrated model of care to reduce treatment-related oral morbidity in head and neck cancer survivor
开发口腔健康筛查工具,用于综合护理模式,以减少头颈癌幸存者与治疗相关的口腔发病率
- 批准号:
10781183 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别:
Mapping ankle-foot stiffness to socket comfort and pressure using a robotic emulator platform to personalize prosthesis function via human-in-the-loop optimization
使用机器人仿真器平台将踝足硬度映射到插座舒适度和压力,通过人机交互优化来个性化假肢功能
- 批准号:
10584383 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别:
Improving Socket Fit in Female and Male Veterans with Transtibial and TransfemoralAmputation
改善经小腿和经股截肢术的女性和男性退伍军人的接受腔贴合度
- 批准号:
10609490 - 财政年份:2022
- 资助金额:
$ 115.71万 - 项目类别:
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
- 批准号:
10707261 - 财政年份:2022
- 资助金额:
$ 115.71万 - 项目类别:
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
- 批准号:
10547407 - 财政年份:2022
- 资助金额:
$ 115.71万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10709474 - 财政年份:2021
- 资助金额:
$ 115.71万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10334519 - 财政年份:2021
- 资助金额:
$ 115.71万 - 项目类别: