New approaches to potential theory and conformal mapping
势论和共形映射的新方法
基本信息
- 批准号:1001701
- 负责人:
- 金额:$ 23.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Riemann mapping theorem is an old, beautiful, and tremendously useful device which can be used to pull back the explicit formulas for the classical objects of potential theory on the unit disc to arbitrary simply connected regions in the plane. The unit disc is the quintessential example of a double quadrature domain,i.e., a quadrature domain both with respect to area measure and boundary arc length. Professor Bell and his collaborators have been working on an improvement to the Riemann mapping theorem which replaces the unit disc by a double quadrature domain which, rather than being far away like the unit disc, is close to the original domain. Bell has proved that many of the classical objects of potential theory associated to a double quadrature domain are elementary functions which are simple combination of the coordinate variable and the algebraic Schwarz function, and consequently may be easily computed. Thus, it becomes possible to make minor, but subtle, alterations in a region to make it have many of the desirable properties of the unit disc. This approach has the virtue of being potentially applicable even in the multiply connected and Riemann surface setting, where the Riemann mapping theorem is unavailable.The objects of potential theory and conformal mapping are pervasive in Mathematics, Science, and Engineering. Although these objects are well studied, they continue to be a source of exciting and potentially applicable new mathematics. Professor Bell will express the classical objects of potential theory associated to a two dimensional surface with holes in terms of simple and computable analytic objects. These results may give rise to new and practical methods for expressing and zipping the solutions to classical problems in differential equations, conformal mapping, and potential theory. Because humans best perceive higher dimensional objects by taking a series of two dimensional slices, the tools developed could find important applications. Some of the key ideas behind this program grew out of a summer undergraduate research project that Bell directed in 2008, and a noteworthy component of the project is a significant commitment to mentoring and training undergraduates and graduate students involved for a career in mathematics.
黎曼映射定理是一个古老、美丽和非常有用的工具,它可以用来将单位圆盘上经典位势理论对象的显式公式拉回到平面上任意的单连通区域。单位圆盘是双正交域的典型例子,即关于面积测量和边界弧长的正交域。贝尔教授和他的合作者一直致力于对黎曼映射定理的改进,将单位圆盘替换为双正交域,而不是像单位圆盘那样远离,而是接近原始域。Bell已经证明了与双求积域有关的许多经典势论对象都是初等函数,它们是坐标变量和代数Schwarz函数的简单组合,因此可以很容易地计算。因此,可以在区域中进行微小但微妙的改变,以使其具有单位盘的许多所需属性。这种方法具有潜在的优点,即使在多重连通的黎曼曲面上,黎曼映射定理也是不成立的。位势理论和保角映射的对象在数学、科学和工程中是普遍存在的。尽管对这些物体进行了很好的研究,但它们仍然是令人兴奋和潜在适用的新数学的来源。贝尔教授将用简单和可计算的分析对象来表示与带有洞的二维表面有关的经典势论对象。这些结果可能为表达和压缩微分方程组、保角映射和位势理论中的经典问题的解提供新的实用方法。由于人类通过获取一系列二维切片来感知更高维度的物体是最好的,因此开发的工具可以找到重要的应用。该项目背后的一些关键想法源于贝尔在2008年指导的一个夏季本科生研究项目,该项目的一个值得注意的组成部分是对参与数学职业生涯的本科生和研究生进行指导和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bell其他文献
Mutant p53 induces SH3BGRL expression to promote cell engulfment
突变型 p53 诱导 SH3BGRL 表达以促进细胞吞噬
- DOI:
10.1038/s41420-025-02582-x - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.000
- 作者:
Lobsang Dolma;Mary I. Patterson;Antonia Banyard;Callum Hall;Steven Bell;Wolfgang Breitwieser;Sudhakar Sahoo;John Weightman;Maria Pazos Gil;Garry Ashton;Caron Behan;Nicola Fullard;Lewis D. Williams;Patricia AJ. Muller - 通讯作者:
Patricia AJ. Muller
The write algorithm: promoting responsible artificial intelligence usage and accountability in academic writing
- DOI:
10.1186/s12916-023-03039-7 - 发表时间:
2023-09-04 - 期刊:
- 影响因子:8.300
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Nucleus of fairness: epigenetic ageing, social determinants of health and the imperative for proactive preventive measures
公平的核心:表观遗传衰老、健康的社会决定因素以及积极预防措施的必要性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.3
- 作者:
Steven Bell - 通讯作者:
Steven Bell
F96. ALCOHOL USE AND DEMENTIA IN DIVERSE POPULATIONS
F96. 不同人群中的酒精使用与痴呆
- DOI:
10.1016/j.euroneuro.2024.08.507 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Anya Topiwala;Daniel Levey;Hang Zhou;Joseph Deak;Keyrun Adhikari;Klaus P. Ebmeier;Steven Bell;Stephen Burgess;Thomas E. Nichols;Michael Gaziano;Murray Stein;Joel Gelernter - 通讯作者:
Joel Gelernter
Using webcasts as a teaching tool
- DOI:
10.1007/bf02763506 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Steven Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bell', 18)}}的其他基金
Building the Queen's University of Belfast AMR Network (QUBAN)
建设贝尔法斯特女王大学 AMR 网络 (QUBAN)
- 批准号:
EP/M027473/1 - 财政年份:2015
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
Personalized fitting and evaluation of hearing aids with EEG responses
通过脑电图反应对助听器进行个性化验配和评估
- 批准号:
EP/M026728/1 - 财政年份:2015
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
Surface-active Gels as Next-generation Chemical Sensors
表面活性凝胶作为下一代化学传感器
- 批准号:
EP/E028543/1 - 财政年份:2007
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
Developing a clinical indicator of depth of anaesthesia based on auditory evoked potentials
基于听觉诱发电位开发麻醉深度的临床指标
- 批准号:
EP/D505593/1 - 财政年份:2006
- 资助金额:
$ 23.6万 - 项目类别:
Research Grant
Complexity of the objects of complex analysis and holomorphic mapping problems
复分析对象的复杂性与全纯映射问题
- 批准号:
0072197 - 财政年份:2000
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations and Complex Analysis
数学科学:偏微分方程和复分析
- 批准号:
9623098 - 财政年份:1996
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations in Complex Analysis
数学科学:复分析中的偏微分方程
- 批准号:
9302513 - 财政年份:1993
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mapping Problems in Complex Analysis
数学科学:复分析中的映射问题
- 批准号:
8922810 - 财政年份:1990
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Holomorphic Mappings in Several Complex Variables
数学科学:多个复变量的全纯映射
- 批准号:
8619858 - 财政年份:1987
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
- 批准号:
10732745 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Collagen-mediated approaches to improve the local delivery and hypothermic release of osteoarthritis therapeutics
胶原介导的方法改善骨关节炎治疗药物的局部递送和低温释放
- 批准号:
10595325 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Novel Therapeutic Approaches for Aggressive Prostate Cancer
侵袭性前列腺癌的新治疗方法
- 批准号:
10734381 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Understanding the pro-inflammatory and protective potential of the Gut Microbiome in Developing Novel Therapeutic Approaches to Prevent Crohn's Disease
了解肠道微生物组在开发预防克罗恩病的新治疗方法中的促炎和保护潜力
- 批准号:
488960 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Operating Grants
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10493806 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
- 批准号:
10661086 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
CAREER: In Vitro Model Approaches Leveraging Quantitative Cancer Cell Properties as Determinants of Metastatic Potential
职业:体外模型方法利用定量癌细胞特性作为转移潜力的决定因素
- 批准号:
2145521 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10704135 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Combining innovative molecular adjuvanting approaches with novel adenoviral vector delivery to generate a universal influenza vaccine
将创新的分子佐剂方法与新型腺病毒载体递送相结合以产生通用流感疫苗
- 批准号:
10653245 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
PaSAGE: PAtient Supported Approaches to Gene Editing
PaSAGE:患者支持的基因编辑方法
- 批准号:
10709501 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别: