Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
基本信息
- 批准号:0072565
- 负责人:
- 金额:$ 6.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2001-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe problems that are to be addressed in this project involve, on one hand, dynamics of flows on homogeneous spaces of Lie groups, and, on the other hand, the multi-dimensional theory of Diophantine approximations. Various connections between these two fields have been found in the last two decades, which significantly stimulated progress in both fields. During recent years, the proposer's research has been centered on developing new links between homogeneous dynamics and number theory, which has resulted in solving many important problems, as well as in creating new directions for further research. The investigator is to continue his work on bounded trajectories,growth rate of orbits, Diophantine approximation with weights and Khintchine-type theorems on manifolds. This project deals with algebraic dynamical systems and their applications to number theory. Many problems concerning simultaneous approximation of real numbers by rational numbers can be cast in terms of the behavior of certain orbits. Dynamical systems in the present context deal with how points in a system move over time, given a set of differential equations (or laws of nature) governing the system. It turns out that various numerical approximations used in the theory of integer equations can be better calculated once they are phrased in dynamical systems language.
这个项目要解决的问题一方面涉及李群齐次空间上的流动的动力学,另一方面涉及丢番图逼近的多维理论。在过去的二十年里,这两个领域之间发现了各种联系,这极大地促进了这两个领域的进步。近年来,作者的研究集中于发展齐次动力学和数论之间的新联系,从而解决了许多重要问题,并为进一步的研究创造了新的方向。研究者将继续他在有界轨道、轨道增长率、带权丢番图逼近和流形上的Khintchine型定理方面的工作。本课题研究代数动力系统及其在数论中的应用。关于有理数同时逼近实数的许多问题可以用某些轨道的行为来表示。在目前的上下文中,动力系统处理的是系统中的点如何在给定的一组微分方程式(或自然定律)支配系统的情况下随时间移动。结果表明,整数方程理论中使用的各种数值近似,只要用动力系统语言表述,就能更好地计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Kleinbock其他文献
Badly approximable <em>S</em>-numbers and absolute Schmidt games
- DOI:
10.1016/j.jnt.2015.12.014 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Tue Ly - 通讯作者:
Tue Ly
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Dimension bounds for escape on average in homogeneous spaces
均匀空间中平均逃逸的维度界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dmitry Kleinbock;Shahriar Mirzadeh - 通讯作者:
Shahriar Mirzadeh
Measure theoretic laws for limsup sets defined by rectangles
- DOI:
https://doi.org/10.1016/j.aim.2023.109154 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Wang Baowei - 通讯作者:
Wang Baowei
Dmitry Kleinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Kleinbock', 18)}}的其他基金
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
- 批准号:
2155111 - 财政年份:2022
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
New Directions in Homogeneous Dynamics and Diophantine Approximation
齐次动力学和丢番图近似的新方向
- 批准号:
1600814 - 财政年份:2016
- 资助金额:
$ 6.15万 - 项目类别:
Continuing Grant
Old and new techniques in homogeneous dynamics and Diophantine approximation: quantitative nondivergence, Schmidt games, random walks
齐次动力学和丢番图近似中的新旧技术:定量非散度、施密特游戏、随机游走
- 批准号:
1101320 - 财政年份:2011
- 资助金额:
$ 6.15万 - 项目类别:
Continuing Grant
Exceptional and Generic Orbits in Homogeneous Dynamics and Number Theory
齐次动力学和数论中的例外和一般轨道
- 批准号:
0801064 - 财政年份:2008
- 资助金额:
$ 6.15万 - 项目类别:
Continuing Grant
CAREER: Dynamical Systems on Homogeneous Spaces and Applications to Number Theory
职业:齐次空间动力系统及其在数论中的应用
- 批准号:
0239463 - 财政年份:2003
- 资助金额:
$ 6.15万 - 项目类别:
Continuing Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0196124 - 财政年份:2000
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
Flows on Homogeneous Spaces and Diophantine Approximation
齐次空间上的流和丢番图近似
- 批准号:
9704489 - 财政年份:1997
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
相似海外基金
Nanoclusters, nanoparticles, and surfaces: Bridging the gap between homogeneous and heterogeneous catalysis.
纳米团簇、纳米颗粒和表面:弥合均相催化和非均相催化之间的差距。
- 批准号:
RGPIN-2021-03144 - 财政年份:2022
- 资助金额:
$ 6.15万 - 项目类别:
Discovery Grants Program - Individual
Unveiling trans-scale relationship between dynamic bonds and mechanical properties by homogeneous polymer networks
通过均质聚合物网络揭示动态键和机械性能之间的跨尺度关系
- 批准号:
21K14678 - 财政年份:2021
- 资助金额:
$ 6.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nanoclusters, nanoparticles, and surfaces: Bridging the gap between homogeneous and heterogeneous catalysis.
纳米团簇、纳米颗粒和表面:弥合均相催化和非均相催化之间的差距。
- 批准号:
RGPIN-2021-03144 - 财政年份:2021
- 资助金额:
$ 6.15万 - 项目类别:
Discovery Grants Program - Individual
Investigation of Homogeneous Electron Transfer Reaction between Metal Complexes in Ionic Liquids
离子液体中金属配合物间均相电子转移反应的研究
- 批准号:
16K05865 - 财政年份:2016
- 资助金额:
$ 6.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards a Series of Design Rules for Homogeneous Catalysis: Synergy Between Experiment and Theory
走向一系列均相催化的设计规则:实验与理论的协同
- 批准号:
EP/H030077/2 - 财政年份:2012
- 资助金额:
$ 6.15万 - 项目类别:
Research Grant
Towards a Series of Design Rules for Homogeneous Catalysis: Synergy Between Experiment and Theory
走向一系列均相催化的设计规则:实验与理论的协同
- 批准号:
EP/H030077/1 - 财政年份:2010
- 资助金额:
$ 6.15万 - 项目类别:
Research Grant
Support of the International Symposium on Relations Between Homogeneous and Heterogeneous Catalysis (ISHHC)
支持均相与多相催化关系国际研讨会(ISHHC)
- 批准号:
0334327 - 财政年份:2003
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0196124 - 财政年份:2000
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant
On relations between homogeneous spaces and the Riemann zeta-function
齐次空间与黎曼 zeta 函数的关系
- 批准号:
05804004 - 财政年份:1993
- 资助金额:
$ 6.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Equipment Related to the Study of Interaction Between Homogeneous Turbulence and Solid Particles
均匀湍流与固体颗粒相互作用研究相关设备
- 批准号:
9208350 - 财政年份:1992
- 资助金额:
$ 6.15万 - 项目类别:
Standard Grant














{{item.name}}会员




