CAREER: Dynamical Systems on Homogeneous Spaces and Applications to Number Theory
职业:齐次空间动力系统及其在数论中的应用
基本信息
- 批准号:0239463
- 负责人:
- 金额:$ 40.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractDMS 0238463D Kleinbock(Brandeis): CareerThe research component of the project deals with algebraicdynamical systems and their applications to number theory.A dynamical system here stands for an abstract set of pointstogether with an evolution law which governs the way pointsmove over time. It turns out that many problems concerningsimultaneous approximation of real numbers by rational numberscan be cast in terms of the behavior of certain orbits, andvarious phenomena related to the theory of integer equationsor inequalities can be better understood once they are phrasedin dynamical systems language. Furthermore, systems thatarise in this context are of algebraic nature, which makesit possible to use a wide variety of sophisticated tools fortheir investigation.The educational component consists of several ingredients:developing new `creative thinking' courses and supervisingsummer research projects for both undergraduate and graduatestudents, and maintaining an introductory-style interdisciplinaryseminar. The goals are to engage students in challenging researchprojects, encourage non-standard independent thinking, and toexpose them to a broad spectrum of current mathematical research.
Kleinbock(Brandeis):职业该项目的研究部分涉及代数动力系统及其在数论中的应用。动力系统在这里代表一组抽象的点,它们具有一个演化定律,该定律支配着点随时间移动的方式。结果表明,许多关于用有理数同时逼近真实的数的问题都可以用某些轨道的性质来描述,而与整数方程或不等式理论有关的各种现象,一旦用动力系统语言来表述,就能得到更好的理解。此外,在这种情况下出现的系统是代数性质的,这使得有可能使用各种各样的复杂的工具来进行调查。教育部分包括几个成分:开发新的“创造性思维”课程和监督本科生和研究生的暑期研究项目,并保持一个介绍式的跨学科系统。目标是让学生参与具有挑战性的研究项目,鼓励非标准的独立思考,并让他们接触到当前广泛的数学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Kleinbock其他文献
Badly approximable <em>S</em>-numbers and absolute Schmidt games
- DOI:
10.1016/j.jnt.2015.12.014 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Tue Ly - 通讯作者:
Tue Ly
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Dimension bounds for escape on average in homogeneous spaces
均匀空间中平均逃逸的维度界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dmitry Kleinbock;Shahriar Mirzadeh - 通讯作者:
Shahriar Mirzadeh
Measure theoretic laws for limsup sets defined by rectangles
- DOI:
https://doi.org/10.1016/j.aim.2023.109154 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Wang Baowei - 通讯作者:
Wang Baowei
Dmitry Kleinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Kleinbock', 18)}}的其他基金
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
- 批准号:
2155111 - 财政年份:2022
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
New Directions in Homogeneous Dynamics and Diophantine Approximation
齐次动力学和丢番图近似的新方向
- 批准号:
1600814 - 财政年份:2016
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
Old and new techniques in homogeneous dynamics and Diophantine approximation: quantitative nondivergence, Schmidt games, random walks
齐次动力学和丢番图近似中的新旧技术:定量非散度、施密特游戏、随机游走
- 批准号:
1101320 - 财政年份:2011
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
Exceptional and Generic Orbits in Homogeneous Dynamics and Number Theory
齐次动力学和数论中的例外和一般轨道
- 批准号:
0801064 - 财政年份:2008
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0072565 - 财政年份:2000
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0196124 - 财政年份:2000
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
Flows on Homogeneous Spaces and Diophantine Approximation
齐次空间上的流和丢番图近似
- 批准号:
9704489 - 财政年份:1997
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Frailty Assessment for Older Adults with Walking Disabilities using Dynamical Modeling of Cardiac, Brain, and Motor Systems in Response to Provocative Testing
职业:使用心脏、大脑和运动系统的动态模型来响应激发测试,对患有步行障碍的老年人进行虚弱评估
- 批准号:
2402238 - 财政年份:2023
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Characterizing Attack Resilience of Multi-agent Dynamical Systems with Applications to Connected Autonomous Vehicles
职业:表征多智能体动态系统的攻击弹性及其在联网自动驾驶汽车中的应用
- 批准号:
2236537 - 财政年份:2023
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Frailty Assessment for Older Adults with Walking Disabilities using Dynamical Modeling of Cardiac, Brain, and Motor Systems in Response to Provocative Testing
职业:使用心脏、大脑和运动系统的动态模型来响应激发测试,对患有步行障碍的老年人进行虚弱评估
- 批准号:
2236689 - 财政年份:2023
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
CAREER: New Foundations for Multi-Fidelity Prediction, Estimation, and Learning Under Uncertainty in Dynamical Systems
职业生涯:动态系统不确定性下多保真度预测、估计和学习的新基础
- 批准号:
2238913 - 财政年份:2023
- 资助金额:
$ 40.32万 - 项目类别:
Standard Grant
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
- 批准号:
2145845 - 财政年份:2022
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Dynamical Systems Modeling of Large-Scale Neural Signals Underlying Cognition
职业:认知基础大规模神经信号的动态系统建模
- 批准号:
1845836 - 财政年份:2019
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
- 批准号:
1847144 - 财政年份:2019
- 资助金额:
$ 40.32万 - 项目类别:
Continuing Grant