New Directions in Homogeneous Dynamics and Diophantine Approximation
齐次动力学和丢番图近似的新方向
基本信息
- 批准号:1600814
- 负责人:
- 金额:$ 35.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project deals with certain algebraic dynamical systems and their applications to number theory. A dynamical system here stands for an abstract set of points together with an evolution law that governs the way points move over time. Such abstract dynamical systems form the basis for models of a wide range of important phenomena in science and engineering. It turns out that also many problems in mathematics concerning simultaneous approximation of real numbers by rational numbers can be understood in terms of the behavior of dynamical systems. Furthermore, systems that arise in this context are of algebraic nature, which makes it possible to use a wide variety of sophisticated tools for their investigation. This research project aims to advance the framework of algebraic dynamical systems in approximation theory, develop new methods, and obtain far-reaching generalizations of results in the field. Graduate and undergraduate students will be involved in the project and introduced to new methods and techniques in number theory and dynamics. These students will also supervise research projects within the framework of the PRIMES program, an after-school research program for high school students. During recent years there has been an influx of new ideas concerning connections between number theory and dynamical systems, making it possible to rethink a spectrum of possibilities for further work. This research project continues the study of phenomena in both homogeneous dynamics and Diophantine approximation related to asymptotic properties of orbits using those new ideas and methods. Dynamical tools to be used are: quantitative non-divergence on the space of lattices, Schmidt games and their modifications, recurrence of random walks and integral inequalities, measure rigidity, effective mixing, and equidistribution properties.
这个项目涉及某些代数动力系统及其在数论中的应用。这里的动力系统代表一组抽象的点,以及一个控制点随时间移动的演化定律。这种抽象的动力系统形成了科学和工程中广泛的重要现象模型的基础。事实证明,数学中的许多问题也可以用动力系统的行为来理解,这些问题涉及到用有理数同时逼近真实的数。此外,在这种情况下出现的系统是代数性质的,这使得有可能使用各种各样的复杂工具进行调查。该研究项目旨在推进近似理论中代数动力系统的框架,开发新方法,并在该领域获得具有深远意义的推广结果。研究生和本科生将参与该项目,并介绍数论和动力学的新方法和技术。 这些学生还将在PRIMES计划的框架内监督研究项目,PRIMES计划是一项针对高中生的课后研究计划。近年来,关于数论和动力系统之间的联系的新思想不断涌现,使人们有可能重新思考进一步工作的可能性。本研究计画继续利用这些新的观念与方法,研究齐次动力学与丢番图近似中与轨道渐近性质相关的现象。要使用的动态工具是:定量非发散空间的格子,施密特游戏及其修改,随机游动和积分不等式的复发,措施刚性,有效的混合,和equidistribution属性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Kleinbock其他文献
Badly approximable <em>S</em>-numbers and absolute Schmidt games
- DOI:
10.1016/j.jnt.2015.12.014 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Tue Ly - 通讯作者:
Tue Ly
Dimension bounds for escape on average in homogeneous spaces
均匀空间中平均逃逸的维度界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dmitry Kleinbock;Shahriar Mirzadeh - 通讯作者:
Shahriar Mirzadeh
Measure theoretic laws for limsup sets defined by rectangles
- DOI:
https://doi.org/10.1016/j.aim.2023.109154 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Wang Baowei - 通讯作者:
Wang Baowei
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Dmitry Kleinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Kleinbock', 18)}}的其他基金
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
- 批准号:
2155111 - 财政年份:2022
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Old and new techniques in homogeneous dynamics and Diophantine approximation: quantitative nondivergence, Schmidt games, random walks
齐次动力学和丢番图近似中的新旧技术:定量非散度、施密特游戏、随机游走
- 批准号:
1101320 - 财政年份:2011
- 资助金额:
$ 35.43万 - 项目类别:
Continuing Grant
Exceptional and Generic Orbits in Homogeneous Dynamics and Number Theory
齐次动力学和数论中的例外和一般轨道
- 批准号:
0801064 - 财政年份:2008
- 资助金额:
$ 35.43万 - 项目类别:
Continuing Grant
CAREER: Dynamical Systems on Homogeneous Spaces and Applications to Number Theory
职业:齐次空间动力系统及其在数论中的应用
- 批准号:
0239463 - 财政年份:2003
- 资助金额:
$ 35.43万 - 项目类别:
Continuing Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0072565 - 财政年份:2000
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0196124 - 财政年份:2000
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Flows on Homogeneous Spaces and Diophantine Approximation
齐次空间上的流和丢番图近似
- 批准号:
9704489 - 财政年份:1997
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 35.43万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 35.43万 - 项目类别:
Standard Grant