Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
基本信息
- 批准号:2155111
- 负责人:
- 金额:$ 39.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project deals with certain dynamical systems of algebraic origin and their applications to number theory. A dynamical system here stands for an abstract set of points together with an evolution law that governs the way points move over time. Such abstract dynamical systems form the basis for models of a wide range of important phenomena in science and engineering. It turns out that many questions in mathematics concerning simultaneous approximation of real numbers by rational numbers can be understood in terms of the behavior of dynamical systems. Furthermore, systems that arise in this context are of algebraic nature, which makes it possible to use a wide variety of sophisticated tools for their investigation. This research project aims to advance the framework of algebraic dynamical systems in approximation theory, develop new methods, and obtain far-reaching generalizations of results in the field. Graduate and undergraduate students will be involved in the project and introduced to new methods and techniques in number theory and dynamics. These students will also supervise research projects within the framework of the PRIMES program, an after-school research program for high school students.During recent years there have been important developments concerning connections between Diophantine approximation and dynamical systems. This research project continues the study of phenomena in both dynamics and number theory related to asymptotic and uniform approximations. Among the mathematical tools to be employed are: Schmidt games and their modifications, integral inequalities of Eskin-Margulis-Mozes, effective mixing and equidistribution properties, Siegel-Rogers moment formulas, and parametric geometry of numbers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及某些代数起源的动力系统及其在数论中的应用。这里的动力系统代表一组抽象的点以及控制点随时间移动方式的演化定律。这种抽象的动力系统构成了科学和工程中各种重要现象的模型的基础。事实证明,数学中有关有理数同时逼近实数的许多问题都可以用动力系统的行为来理解。此外,在这种情况下出现的系统具有代数性质,这使得使用各种复杂的工具进行研究成为可能。该研究项目旨在推进近似理论中的代数动力系统框架,开发新方法,并获得该领域成果的深远推广。研究生和本科生将参与该项目,并了解数论和动力学方面的新方法和技术。这些学生还将监督 PRIMES 计划框架内的研究项目,这是一项针对高中生的课后研究计划。近年来,丢番图近似与动力系统之间的联系取得了重要进展。该研究项目继续研究与渐近和一致近似相关的动力学和数论现象。所采用的数学工具包括:施密特博弈及其修改、Eskin-Margulis-Mozes 积分不等式、有效混合和均匀分布特性、Siegel-Rogers 矩公式和数字参数几何。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持 标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhomogeneous Diophantine approximation for generic homogeneous functions
泛型齐次函数的非齐次丢番图近似
- DOI:10.1142/s1793042123500628
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Kleinbock, Dmitry;Skenderi, Mishel
- 通讯作者:Skenderi, Mishel
Measure theoretic laws for limsup sets defined by rectangles
- DOI:10.1016/j.aim.2023.109154
- 发表时间:2023-03
- 期刊:
- 影响因子:1.7
- 作者:D. Kleinbock;Baowei Wang
- 通讯作者:D. Kleinbock;Baowei Wang
Equidistribution in the space of 3-lattices and Dirichlet-improvable vectors on planar lines
平面线上 3 格空间中的均匀分布和狄利克雷改进向量
- DOI:10.2422/2036-2145.202107_006
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kleinbock, Dmitry;de Saxcé, Nicolas;Shah, Nimish A.;Yang, Pengyu
- 通讯作者:Yang, Pengyu
On the dimension drop conjecture for diagonal flows on the space of lattices
- DOI:10.1016/j.aim.2023.109058
- 发表时间:2020-10
- 期刊:
- 影响因子:1.7
- 作者:D. Kleinbock;Shahriar Mirzadeh
- 通讯作者:D. Kleinbock;Shahriar Mirzadeh
Dynamical Borel–Cantelli lemma for recurrence under Lipschitz twists
- DOI:10.1088/1361-6544/acafcb
- 发表时间:2022-05
- 期刊:
- 影响因子:1.7
- 作者:D. Kleinbock;Jiajie Zheng
- 通讯作者:D. Kleinbock;Jiajie Zheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Kleinbock其他文献
Badly approximable <em>S</em>-numbers and absolute Schmidt games
- DOI:
10.1016/j.jnt.2015.12.014 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Tue Ly - 通讯作者:
Tue Ly
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Dimension bounds for escape on average in homogeneous spaces
均匀空间中平均逃逸的维度界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dmitry Kleinbock;Shahriar Mirzadeh - 通讯作者:
Shahriar Mirzadeh
Measure theoretic laws for limsup sets defined by rectangles
- DOI:
https://doi.org/10.1016/j.aim.2023.109154 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Dmitry Kleinbock;Wang Baowei - 通讯作者:
Wang Baowei
Dmitry Kleinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Kleinbock', 18)}}的其他基金
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
New Directions in Homogeneous Dynamics and Diophantine Approximation
齐次动力学和丢番图近似的新方向
- 批准号:
1600814 - 财政年份:2016
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Old and new techniques in homogeneous dynamics and Diophantine approximation: quantitative nondivergence, Schmidt games, random walks
齐次动力学和丢番图近似中的新旧技术:定量非散度、施密特游戏、随机游走
- 批准号:
1101320 - 财政年份:2011
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Exceptional and Generic Orbits in Homogeneous Dynamics and Number Theory
齐次动力学和数论中的例外和一般轨道
- 批准号:
0801064 - 财政年份:2008
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
CAREER: Dynamical Systems on Homogeneous Spaces and Applications to Number Theory
职业:齐次空间动力系统及其在数论中的应用
- 批准号:
0239463 - 财政年份:2003
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0072565 - 财政年份:2000
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Interactions Between Homogeneous Dynamics and Number Theory
齐次动力学与数论之间的相互作用
- 批准号:
0196124 - 财政年份:2000
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Flows on Homogeneous Spaces and Diophantine Approximation
齐次空间上的流和丢番图近似
- 批准号:
9704489 - 财政年份:1997
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
相似海外基金
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
- 批准号:
EP/Y001575/1 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Research Grant
BestYears: Shopping App for Kidswear & School Uniform
BestYears:童装购物应用
- 批准号:
10114568 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
SME Support
CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
- 批准号:
2340925 - 财政年份:2024
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Uniformization of non-uniform geometries
非均匀几何形状的均匀化
- 批准号:
2247364 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Flexible kirigami sheets in uniform and disturbed fluid flow
均匀和扰动流体流动中的柔性剪纸片
- 批准号:
2320300 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
- 批准号:
10740587 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
- 批准号:
23KK0083 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries
复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发
- 批准号:
2309557 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant














{{item.name}}会员




