High Field Studies of Strongly Correlated Electron Systems

强相关电子系统的高场研究

基本信息

  • 批准号:
    0073456
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

This project investigates electron correlations in a class of materials where the strong effective interaction leads to unique physical effects. The research is primarily experimental and exploits intense magnetic fields which have recently become available in the United States. The materials are primarily in single crystal form and include UPt3, URu2Si2, U2Pt2In and LiV2O4. The project uses ultrasound, magnetometry, transport and thermodynamic measurements in intense magnetic fields, at low temperatures and high pressures. Strongly correlated systems possess a rich phase diagram with a number of different possible electronic states existing in close proximity to each other. An external perturbation can drive the system from one part of the phase diagram to a neighboring one. Intense magnetic fields are one such perturbation which can have a marked impact on the electrons and thus provide a window to examine the strong correlations between them. The proposed measurements present challenges due to the extreme environment of high magnetic fields, low temperatures and high pressures. The results experiments may lead to an increased understanding technologically important materials such as high temperature superconductors and giant magnetoresistive alloys. The knowledge and information obtained through this research is disseminated through an on-line resource center for strongly correlated materials maintained on the University of Virginia physics server. Post and pre-doctoral students involved in this project will receive training in advanced instrumentation, materials handling and analysis that will prepare them for careers in academia and industry.%%%This research will examine the nature of the interactions between electrons in a class of materials where these interactions are strong enough to lead to unique and novel physical effects. These materials are formed primarily from elements with unpaired f and d - electrons in their outer shells. The research is experimental and involves the use of the most intense man made magnetic fields which have recently become available in the United States. The materials that will be studied are in perfect crystalline form so that high quality measurements using techniques such as ultrasound, magnetometry, electrical transport and thermodynamics can be performed. Intense magnetic fields can have several effects on materials. The most commonly observed effect in metals is the increase of resistance. A strong enough magnetic field can turn a metal into an insulator. Such effects in the materials chosen for the proposed research are particularly dramatic. The application of a magnetic field thus provides a window to examine the nature of the interactions between electrons in the chosen materials. The electronic properties of these materials bear many similarities to those of several other technologically important systems such as high temperature superconductors and giant magnetoresistive alloys. For the measurements chosen the extreme environment of high magnetic fields presents many challenges. New experimental techniques are being developed to surmount these challenges and by themselves may offer technological pay-offs. An on-line resource center to disseminate the knowledge and information obtained through the proposed research will be maintained on the University of Virginia physics server. Graduate and undergraduate students involved in the project will receive training in advanced instrumentation, materials handling and analysis that will prepare them for wide ranging careers in academia, industry and the government.
该项目研究一类材料中的电子相关性,其中强有效相互作用导致独特的物理效应。 这项研究主要是实验性的,利用了最近在美国可用的强磁场。 这些材料主要是单晶形式,包括UPt3、URu2Si2、U2Pt2In和LiV2O4。该项目使用超声波,磁力测量,运输和强磁场中的热力学测量,在低温和高压。 强关联系统拥有丰富的相图,其中存在许多彼此接近的不同可能的电子状态。 外部扰动可以将系统从相图的一部分驱动到相邻的一部分。 强磁场就是这样一种扰动,它可以对电子产生显著的影响,从而提供一个窗口来检查它们之间的强相关性。 由于高磁场、低温和高压的极端环境,所提出的测量提出了挑战。 实验结果可能会增加对高温超导体和巨磁阻合金等技术重要材料的理解。 通过这项研究获得的知识和信息通过弗吉尼亚大学物理服务器上维护的强相关材料在线资源中心传播。 参与该项目的博士后和博士前学生将接受先进仪器、材料处理和分析方面的培训,为他们在学术界和工业界的职业生涯做好准备。这项研究将研究一类材料中电子之间相互作用的性质,这些相互作用足够强,可以导致独特和新颖的物理效应。 这些材料主要是由在其外壳中具有未成对f和d电子的元素形成的。 这项研究是实验性的,涉及使用最近在美国可用的最强的人造磁场。 将被研究的材料是完美的结晶形式,因此可以使用超声波,磁力测量,电输运和热力学等技术进行高质量的测量。 强磁场会对材料产生多种影响。 在金属中最常见的效应是电阻的增加。 足够强的磁场可以使金属变成绝缘体。 在为拟议的研究选择的材料中,这种影响特别引人注目。 因此,磁场的应用提供了一个窗口来检查所选材料中电子之间相互作用的性质。 这些材料的电子性质与其他几种重要的技术系统,如高温超导体和巨磁阻合金有许多相似之处。 对于所选择的测量,高磁场的极端环境带来了许多挑战。 正在开发新的实验技术来克服这些挑战,这些技术本身可能会带来技术回报。 一个在线资源中心,以传播通过拟议的研究获得的知识和信息将保持在弗吉尼亚大学的物理服务器。 参与该项目的研究生和本科生将接受先进仪器、材料处理和分析方面的培训,为他们在学术界、工业界和政府的广泛职业生涯做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bellave Shivaram其他文献

Bellave Shivaram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bellave Shivaram', 18)}}的其他基金

EAGER: Ultrasound Studies in High Fields and High Strain of the Normal State in Unconventional Odd Parity Superconductors
EAGER:非常规奇奇偶校验超导体常态高场和高应变的超声研究
  • 批准号:
    2016909
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
SGER: Inelastic Electron Tunneling Spectroscopy and Nanogravimetry of New Transition Metal based Organometal DiHydrogen Complexes
SGER:新型过渡金属基有机金属二氢配合物的非弹性电子隧道光谱和纳重量分析
  • 批准号:
    0838016
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Development of a Variable Temperature Near-field Scanning Acoustic Microscope with Rapid Sample Access
开发具有快速样品存取功能的变温近场扫描声学显微镜
  • 批准号:
    0114183
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Investigations of Unconventional Superconducting and Magnetic Order-Parameters in Heavy Electron Materials
重电子材料中非常规超导和磁有序参数的研究
  • 批准号:
    9624468
  • 财政年份:
    1996
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Electronic Properties, Magnetotransport and STM in Quasi-One-and-Two-Dimensional Metals
准一维和二维金属的电子特性、磁输运和 STM
  • 批准号:
    9223576
  • 财政年份:
    1993
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
U.S.-China Cooperative Research: Ultralow Temperature Tunneling Studies of Heavy Electron Superconductors
中美合作研究:重电子超导体超低温隧道研究
  • 批准号:
    9307371
  • 财政年份:
    1993
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Low Temperature Studies of Heavy Electron Superconductors
重电子超导体的低温研究
  • 批准号:
    9218775
  • 财政年份:
    1993
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Ultralow Temperature Studies of Heavy Electron Superconductors and Superfluid Helium-Three
重电子超导体和超流氦三的超低温研究
  • 批准号:
    9006940
  • 财政年份:
    1990
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
  • 批准号:
    22K18696
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Synthesis and Studies of Single-Molecule Magnets Incorporating Strongly Coupled Two-Coordinate Metal Building Units
强耦合二配位金属构建单元单分子磁体的合成与研究
  • 批准号:
    2138017
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award
Variational studies of strongly-correlated systems
强相关系统的变分研究
  • 批准号:
    RGPIN-2020-04634
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Studies on extreme value theory for strongly correlated random fields
强相关随机场极值理论研究
  • 批准号:
    22K13927
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Variational studies of strongly-correlated systems
强相关系统的变分研究
  • 批准号:
    RGPIN-2020-04634
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of superconducting states with multiple phases in strongly correlated electron materials
强相关电子材料多相超导态的理论研究
  • 批准号:
    21K03455
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了