Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations
多面体凸性的计算研究:格点和三角剖分
基本信息
- 批准号:0073815
- 负责人:
- 金额:$ 7.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
De Loera0073815 The investigator studies the combinatorial and algebraic properties of optimal subdivisions, coverings, and triangulations of convex polytopes. He develops algorithms for the computation of such optimal objects. Criteria of optimality that are explored include minimization of the number of simplices, of the total sum of lengths or areas of simplices, and of the average volume of the simplices. He also develops software for counting all lattice points inside a low-dimensional polytope and for computing their integer hulls. The technique also allows the fast computation of volumes. Specific problems are considered to assess efficiency of the software, for example the optimal arrangements of n points, in a sphere of fixed radius, that maximize the number of lattice points inside their convex hull. Algorithms for the software are adaptations of new techniques, due to Barvinok, that are based on covering polyhedra with unimodular simplices. This project also includes methods from convexity, combinatorics, integer and linear programming, commutative algebra, complexity, and intensive computer experimentation. The results of this work should be of interest in integer programming, combinatorics, and symbolic-algebraic computing. Informally speaking, the first part of this project can be thought of as an attempt to understand how to break or decompose objects, such as cubes and polygons, into elementary blocks or pieces efficiently. This is perhaps reminiscent of creating jigsaw puzzles. The blocks used in the decomposition are, for instance, tetrahedra, triangles, or smaller cubes. An example of efficient decomposition is to use the smallest number of pieces. The second part of the project involves establishing practical computer software for counting regularly distributed points within regular boundaries. Examples of regularly distributed points are arrangements of atoms or crystals. Many of the theoretical questions under study are motivated by problems in computer graphics and computer visualization (via the design of economic meshes for modeling figures), data security and computation (in the context of RSA encryption, which is used in internet transactions), and operations research (via certain techniques for solving integer programs when levels of uncertainty are expected). The training of students is an important component of the project.
De Loera0073815 调查研究的组合和代数性质的最佳细分,覆盖,和三角形的凸多面体。 他开发了计算这种最佳对象的算法。 探讨的最优性标准包括单形的数量最小化,单形的长度或面积的总和,以及单形的平均体积。 他还开发软件,用于计算低维多面体内的所有格点,并计算其整数外壳。 该技术还允许快速计算体积。 具体的问题被认为是评估软件的效率,例如,n个点的最佳安排,在一个球体的固定半径,最大限度地提高了网格点内的凸船体的数量。 该软件的算法是新技术的适应,由于Barvinok,这是基于覆盖多面体与单模单形。 该项目还包括凸性,组合学,整数和线性规划,交换代数,复杂性和密集的计算机实验的方法。 这项工作的结果应感兴趣的整数规划,组合数学和符号代数计算。 非正式地说,这个项目的第一部分可以被认为是试图理解如何有效地将物体(如立方体和多边形)分解或分解为基本块或块。 这也许让人想起了制作拼图游戏。 分解中使用的块例如是四面体、三角形或更小的立方体。 有效分解的一个例子是使用最少数量的片段。 该项目的第二部分涉及建立实用的计算机软件,用于计算规则边界内规则分布的点。 规则分布点的例子是原子或晶体的排列。 研究中的许多理论问题都是由计算机图形学和计算机可视化(通过设计用于建模的经济网格),数据安全和计算(在RSA加密的背景下,用于互联网交易)和运筹学(通过某些技术解决整数规划时,预期的不确定性水平)中的问题所激发的。 学生培训是该项目的一个重要组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesus De Loera其他文献
Jesus De Loera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesus De Loera', 18)}}的其他基金
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
- 批准号:
1818969 - 财政年份:2018
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
- 批准号:
1643426 - 财政年份:2017
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
- 批准号:
1522158 - 财政年份:2015
- 资助金额:
$ 7.39万 - 项目类别:
Continuing Grant
Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
- 批准号:
1068187 - 财政年份:2011
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
- 批准号:
0914107 - 财政年份:2009
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
- 批准号:
0636297 - 财政年份:2007
- 资助金额:
$ 7.39万 - 项目类别:
Continuing Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
- 批准号:
0608785 - 财政年份:2006
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
- 批准号:
0336393 - 财政年份:2003
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
相似海外基金
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
- 批准号:
502607 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Discovery Early Career Researcher Award
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006232/1 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006151/1 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Research Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
- 批准号:
2349136 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Continuing Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
- 批准号:
2337194 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
- 批准号:
EP/X031624/1 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Research Grant