Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations

多面体凸性的计算研究:格点和三角剖分

基本信息

  • 批准号:
    0073815
  • 负责人:
  • 金额:
    $ 7.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

De Loera0073815 The investigator studies the combinatorial and algebraic properties of optimal subdivisions, coverings, and triangulations of convex polytopes. He develops algorithms for the computation of such optimal objects. Criteria of optimality that are explored include minimization of the number of simplices, of the total sum of lengths or areas of simplices, and of the average volume of the simplices. He also develops software for counting all lattice points inside a low-dimensional polytope and for computing their integer hulls. The technique also allows the fast computation of volumes. Specific problems are considered to assess efficiency of the software, for example the optimal arrangements of n points, in a sphere of fixed radius, that maximize the number of lattice points inside their convex hull. Algorithms for the software are adaptations of new techniques, due to Barvinok, that are based on covering polyhedra with unimodular simplices. This project also includes methods from convexity, combinatorics, integer and linear programming, commutative algebra, complexity, and intensive computer experimentation. The results of this work should be of interest in integer programming, combinatorics, and symbolic-algebraic computing. Informally speaking, the first part of this project can be thought of as an attempt to understand how to break or decompose objects, such as cubes and polygons, into elementary blocks or pieces efficiently. This is perhaps reminiscent of creating jigsaw puzzles. The blocks used in the decomposition are, for instance, tetrahedra, triangles, or smaller cubes. An example of efficient decomposition is to use the smallest number of pieces. The second part of the project involves establishing practical computer software for counting regularly distributed points within regular boundaries. Examples of regularly distributed points are arrangements of atoms or crystals. Many of the theoretical questions under study are motivated by problems in computer graphics and computer visualization (via the design of economic meshes for modeling figures), data security and computation (in the context of RSA encryption, which is used in internet transactions), and operations research (via certain techniques for solving integer programs when levels of uncertainty are expected). The training of students is an important component of the project.
De Loera0073815研究了凸多面体的最优细分、覆盖和三角剖分的组合和代数性质。他开发了计算这种最优目标的算法。所探讨的最优性标准包括最小化简化的数目、简化的总长度或面积的总和以及简化的平均体积。他还开发了软件,用于计算低维多面体内部的所有格点,并计算它们的整数外壳。该技术还允许快速计算体积。考虑具体问题来评估软件的效率,例如,在固定半径的球面上,最大化其凸壳内的格点数量的n个点的最优布置。该软件的算法是对新技术的改编,由于Barvinok,这些新技术基于用单模单纯形覆盖多面体。这个项目还包括凸性、组合学、整数和线性规划、交换代数、复杂性和密集的计算机实验的方法。这项工作的结果应该对整数规划、组合学和符号代数计算感兴趣。非正式地说,这个项目的第一部分可以被认为是试图了解如何将对象(如立方体和多边形)有效地分解或分解为基本的块或块。这或许让人想起了创造拼图游戏。例如,分解中使用的块是四面体、三角形或更小的立方体。有效分解的一个例子是使用最小数量的碎片。该项目的第二部分涉及建立实用的计算机软件,用于计算规则边界内规则分布的点数。规则分布点的例子是原子或晶体的排列。许多正在研究的理论问题的动机是计算机图形学和计算机可视化(通过为数字建模设计经济网格)、数据安全和计算(在互联网交易中使用RSA加密的背景下)以及运筹学(通过在预期的不确定性水平时解决整数规划的某些技术)。学生的培养是该项目的重要组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesus De Loera其他文献

Jesus De Loera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jesus De Loera', 18)}}的其他基金

Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
  • 批准号:
    2142724
  • 财政年份:
    2022
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
  • 批准号:
    1818969
  • 财政年份:
    2018
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
  • 批准号:
    1643426
  • 财政年份:
    2017
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
  • 批准号:
    1522158
  • 财政年份:
    2015
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
  • 批准号:
    1068187
  • 财政年份:
    2011
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
  • 批准号:
    0914107
  • 财政年份:
    2009
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
  • 批准号:
    0636297
  • 财政年份:
    2007
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
  • 批准号:
    0608785
  • 财政年份:
    2006
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
  • 批准号:
    0309694
  • 财政年份:
    2003
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
  • 批准号:
    0336393
  • 财政年份:
    2003
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Research Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Research Grant
Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 7.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了