Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
基本信息
- 批准号:1068187
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award will support an international workshop on the mathematics at theintersection of convex geometry, topology, and combinatorics, or convextopological combinatorics, for short. This is an important topic becauseconvex geometric and topological techniques have become a main tool indiscrete mathematics and theoretical computer science. In fact, convextopological combinatorics has had a impact in application areas such asalgorithm design, computer graphics, mathematical programming, solidmodeling, and computational biology. At the same time, topology andgeometry have benefited from the study of combinatorial structures such asconvex bodies, polyhedra, simplicial complexes, geometric graphs, etc.,because they appear naturally in relation to important algebraic andtopological spaces such as Grassmanians, toric varieties, configurationspaces, and others.This workshop will be the first large international conference inNorth-America on the topic of convex topological combinatorics. The eventintends to bring together top international researchers to discussdevelopments in these intersecting fields. Besides specific mathematicalresearch, the meeting will increase the cooperation between mathematicalschools in the USA and Mexico, both of which have many strong researchersin convex topological combinatorics and a good number of Ph.D studentsdoing research in these topics. Both groups will benefit from theinteraction that the conference will bring.
该奖项将支持举办关于凸几何、拓扑和组合学(简称凸拓扑组合学)交叉数学的国际研讨会。这是一个重要的话题,因为凸几何和拓扑技术已成为离散数学和理论计算机科学的主要工具。事实上,凸拓扑组合学已经对算法设计、计算机图形学、数学规划、实体建模和计算生物学等应用领域产生了影响。同时,拓扑和几何也受益于对组合结构(如凸体、多面体、单纯复形、几何图等)的研究,因为它们自然地出现在与重要的代数和拓扑空间(如格拉斯曼、环面簇、构形空间等)相关的关系中。本次研讨会将是北美第一个以凸体为主题的大型国际会议 拓扑组合学。该活动旨在汇聚国际顶尖研究人员,讨论这些交叉领域的发展。除了具体的数学研究外,此次会议还将加强美国和墨西哥数学院校之间的合作,这两个国家在凸拓扑组合学方面都拥有众多实力雄厚的研究人员,并且拥有大量从事这些课题研究的博士生。两个群体都将从会议带来的互动中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesus De Loera其他文献
Jesus De Loera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesus De Loera', 18)}}的其他基金
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
- 批准号:
1818969 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
- 批准号:
1643426 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
- 批准号:
1522158 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
- 批准号:
0914107 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
- 批准号:
0636297 - 财政年份:2007
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
- 批准号:
0608785 - 财政年份:2006
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
- 批准号:
0336393 - 财政年份:2003
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations
多面体凸性的计算研究:格点和三角剖分
- 批准号:
0073815 - 财政年份:2000
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
- 批准号:
23K03198 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Projects
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
- 批准号:
2237324 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Study of the topology and the combinatorics of polyhedral products
多面体积的拓扑和组合学研究
- 批准号:
22K03284 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology and Combinatorics for Dynamical Systems and Data
动力系统和数据的拓扑和组合学
- 批准号:
RGPIN-2022-04301 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Topology and geometry of torus actions and combinatorics
环面作用和组合的拓扑和几何
- 批准号:
22K03292 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology and combinatorics of arrangements
排列的拓扑和组合
- 批准号:
2204299 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Interactions between dynamics, topology and combinatorics in low dimensions
低维动力学、拓扑学和组合学之间的相互作用
- 批准号:
2749484 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Studentship














{{item.name}}会员




